IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2005-16.html
   My bibliography  Save this paper

Autoregressive Approximation in Nonstandard Situations: The Non-Invertible and Fractionally Integrated Cases

Author

Listed:
  • D. S. Poskitt

Abstract

Autoregressive models are commonly employed to analyze empirical time series. In practice, however, any autoregressive model will only be an approximation to reality and in order to achieve a reasonable approximation and allow for full generality the order of the autoregression, h say, must be allowed to go to infinity with T, the sample size. Although results are available on the estimation of autoregressive models when h increases indefinitely with T such results are usually predicated on assumptions that exclude (i) non-invertible processes and (ii) fractionally integrated processes. In this paper we will investigate the consequences of fitting long autoregressions under regularity conditions that allow for these two situations and where an infinite autoregressive representation of the process need not exist. Uniform convergence rates for the sample autocovariances are derived and corresponding convergence rates for the estimates of AR(h) approximations are established. A central limit theorem for the coefficient estimates is also obtained. An extension of a result on the predictive optimality of AIC to fractional and non-invertible processes is obtained.

Suggested Citation

  • D. S. Poskitt, 2005. "Autoregressive Approximation in Nonstandard Situations: The Non-Invertible and Fractionally Integrated Cases," Monash Econometrics and Business Statistics Working Papers 16/05, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2005-16
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2005/wp16-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    2. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    3. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    4. Martin, Vance L. & Wilkins, Nigel P., 1999. "Indirect estimation of ARFIMA and VARFIMA models," Journal of Econometrics, Elsevier, vol. 93(1), pages 149-175, November.
    5. Poskitt, Don S, 2000. "Strongly Consistent Determination of Cointegrating Rank via Canonical Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 77-90, January.
    6. Tieslau, Margie A. & Schmidt, Peter & Baillie, Richard T., 1996. "A minimum distance estimator for long-memory processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 249-264.
    7. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    8. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard T. Baillie & George Kapetanios, 2006. "Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates," Working Papers 570, Queen Mary University of London, School of Economics and Finance.
    2. George Kapetanios & Andrew P. Blake, 2007. "Testing the Martingale Difference Hypothesis Using Neural Network Approximations," Working Papers 601, Queen Mary University of London, School of Economics and Finance.
    3. Baillie, Richard T. & Kapetanios, George, 2008. "Nonlinear models for strongly dependent processes with financial applications," Journal of Econometrics, Elsevier, vol. 147(1), pages 60-71, November.
    4. Richard T. Baillie & George Kapetanios & Fotis Papailias, 2017. "Inference for impulse response coefficients from multivariate fractionally integrated processes," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 60-84, March.
    5. George Kapetanios & Zacharias Psaradakis, 2007. "Semiparametric Sieve-Type GLS Inference in Regressions with Long-Range Dependence," Working Papers 587, Queen Mary University of London, School of Economics and Finance.
    6. George Kapetanios & Zacharias Psaradakis, 2007. "Semiparametric Sieve-Type GLS Inference in Regressions with Long-Range Dependence," Working Papers 587, Queen Mary University of London, School of Economics and Finance.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Mayoral, 2007. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
    2. Jensen, Mark J., 2000. "An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 361-387, March.
    3. Martin, Vance L. & Wilkins, Nigel P., 1999. "Indirect estimation of ARFIMA and VARFIMA models," Journal of Econometrics, Elsevier, vol. 93(1), pages 149-175, November.
    4. John W. Galbraith & Victoria Zinde-Walsh, 2001. "Autoregression-Based Estimators for ARFIMA Models," CIRANO Working Papers 2001s-11, CIRANO.
    5. Laura Mayoral, 2003. "A New Minimum Distance Estimation Procedure of ARFIMA Processes," Working Papers 100, Barcelona School of Economics.
    6. Wright, Jonathan H., 1999. "A new estimator of the fractionally integrated stochastic volatility model," Economics Letters, Elsevier, vol. 63(3), pages 295-303, June.
    7. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    8. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    9. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    10. Chong, Terence Tai-Leung, 2000. "Estimating the differencing parameter via the partial autocorrelation function," Journal of Econometrics, Elsevier, vol. 97(2), pages 365-381, August.
    11. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    12. Nigel Wilkins, 2004. "Indirect Estimation of Long Memory Volatility Models," Econometric Society 2004 Far Eastern Meetings 459, Econometric Society.
    13. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022. "Globalization, long memory, and real interest rate convergence: a historical perspective," Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
    14. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    15. Paramsothy Silvapulle, 2001. "A Score Test For Seasonal Fractional Integration And Cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 85-104.
    16. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    17. Elkin Castaño & Santiago Gallón & Karoll Gómez, 2010. "Estimation Biases, Size and Power of a Test on the Long Memory Parameter in ARFIMA Models," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 73, pages 131-148.
    18. S. Lardic & V. Mignon, 2002. "Term premium and long-range dependence in volatility : A FIGARCH-M estimation on some Asian countries," THEMA Working Papers 2002-26, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    19. Silverberg, Gerald & Verspagen, Bart, 1999. "Long Memory in Time Series of Economic Growth and Convergence," Research Memorandum 015, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    20. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.

    More about this item

    Keywords

    Autoregression; Autoregressive approximation; Fractional process; Non-invertibility; Order selection; Asymptotic efficiency.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2005-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.