IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt9wt048tt.html
   My bibliography  Save this paper

Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence

Author

Listed:
  • ANDREWS, DONALD W
  • Sun, Yixiao X

Abstract

The local Whittle (or Guassian semiparametric) estimator of long range dependence, proposed by Kunsch (1987) and analyzed by Robinson (1995a), has a relatively slow rate of convergence and a finite sample bias that can be large. In this paper, we generalize the local Whittle estimator to circumvent these problems. Instead of approximating the short-run component of the spectrum, Phi (Lamda), by a constant in a shrinking neighborhood of frequency zero, we approximate its logarithm by a polynomial. This leads to a "local polynomial Whittle" (LPW) estimator. We specify a data-dependent adaptive procedure that adjusts the degree of the polynomial to the smoothness of Phi (Lamda) at zero and selects the bandwidth. The resulting "adaptive LPW" estimator is shown to achieve the optimal rate of convergence, which depends on the smoothness of Phi (Lamda) at zero, up to a logarithmic factor.

Suggested Citation

  • ANDREWS, DONALD W & Sun, Yixiao X, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence," University of California at San Diego, Economics Working Paper Series qt9wt048tt, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt9wt048tt
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9wt048tt.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    Adaptive estimator; asymptotic bias; asymptotic normality; bias reduction; local polynomial; long memory; minimax rate; optimal bandwidth; Whittle likelihood;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt9wt048tt. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.