IDEAS home Printed from https://ideas.repec.org/p/hit/econdp/2005-13.html
   My bibliography  Save this paper

Nonparametric Density Estimation for Linear Processes with Infinite Variance

Author

Listed:
  • Honda, Toshio
  • 本田, 敏雄

Abstract

We consider nonparametric estimation of marginal density functions of linear processes by using kernel density estimators. We assume that the innovation processes are i.i.d. and have infinite-variance. We present the asymptotic distributions of the kernel density estimators with the order of bandwidths fixed as h=cn-1/5, where n is the sample size. The asymptotic distributions depend on both the coefficients of linear processes and the tail behavior of the innovations. In some cases, the kernel estimators have the same asymptotic distributions as for i.i.d. observations. In other cases, the normalized kernel density estimators converge in distribution to stable distributions. A simulation study is also carried out to examine small sample properties.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Honda, Toshio & 本田, 敏雄, 2006. "Nonparametric Density Estimation for Linear Processes with Infinite Variance," Discussion Papers 2005-13, Graduate School of Economics, Hitotsubashi University.
  • Handle: RePEc:hit:econdp:2005-13
    Note: February 2006; August 2006 (Revised)
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/16959/070econDP05-13.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Toshio Honda, 2000. "Nonparametric Density Estimation for a Long-Range Dependent Linear Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 599-611, December.
    2. Marc Hallin & Lanh T. Tran, 1996. "Kernel density estimation for linear processes: asymptotic normality and bandwidth selection," ULB Institutional Repository 2013/2055, ULB -- Universite Libre de Bruxelles.
    3. Javier Hidalgo, 1997. "Non‐Parametric Estimation With Strongly Dependent Multivariate Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(2), pages 95-122, March.
    4. Marc Hallin & Lanh Tran, 1996. "Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 429-449, September.
    5. Hwai-Chung, Ho, 1996. "On central and non-central limit theorems in density estimation for sequences of long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 63(2), pages 153-174, November.
    6. Peng, Liang & Yao, Qiwei, 2004. "Nonparametric regression under dependent errors with infinite variance," LSE Research Online Documents on Economics 22874, London School of Economics and Political Science, LSE Library.
    7. Giraitis, Liudas & Koul, Hira L. & Surgailis, Donatas, 1996. "Asymptotic normality of regression estimators with long memory errors," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 317-335, September.
    8. Liang Peng & Qiwei Yao, 2004. "Nonparametric regression under dependent errors with infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 73-86, March.
    9. Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
    10. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshio Honda, 2010. "Nonparametric estimation of conditional medians for linear and related processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
    2. Toshio Honda, 2013. "Nonparametric quantile regression with heavy-tailed and strongly dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
    3. Chang, Yoosoon & Kim, Chang Sik & Park, Joon Y., 2016. "Nonstationarity in time series of state densities," Journal of Econometrics, Elsevier, vol. 192(1), pages 152-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toshio Honda, 2010. "Nonparametric estimation of conditional medians for linear and related processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
    2. Toshio Honda, 2013. "Nonparametric quantile regression with heavy-tailed and strongly dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
    3. Ngai Chan & Rongmao Zhang, 2009. "M-estimation in nonparametric regression under strong dependence and infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 391-411, June.
    4. Youndjé, É. & Vieu, P., 2006. "A note on quantile estimation for long-range dependent stochastic processes," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 109-116, January.
    5. Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
    6. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    7. Peng, Liang & Yao, Qiwei, 2004. "Nonparametric regression under dependent errors with infinite variance," LSE Research Online Documents on Economics 22874, London School of Economics and Political Science, LSE Library.
    8. Taufer, Emanuele, 2015. "On the empirical process of strongly dependent stable random variables: asymptotic properties, simulation and applications," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 262-271.
    9. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2015. "Estimators in step regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 124-129.
    10. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Tempered fractional Brownian and stable motions of second kind," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 17-27.
    11. Li, Linyuan, 2003. "On Koul's minimum distance estimators in the regression models with long memory moving averages," Stochastic Processes and their Applications, Elsevier, vol. 105(2), pages 257-269, June.
    12. Liang Peng & Qiwei Yao, 2004. "Nonparametric regression under dependent errors with infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 73-86, March.
    13. Dimitris N. Politis & Peter F. Tarassenko & Vyacheslav A. Vasiliev, 2022. "Estimating Smoothness and Optimal Bandwidth for Probability Density Functions," Stats, MDPI, vol. 6(1), pages 1-20, December.
    14. Schick, Anton & Wefelmeyer, Wolfgang, 2006. "Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1756-1760, October.
    15. Jia Chen & Li-Xin Zhang, 2010. "Local linear M-estimation for spatial processes in fixed-design models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 319-340, May.
    16. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    17. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
    18. Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.
    19. Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
    20. Chan, Ngai Hang & Zhang, Rong-Mao, 2013. "Limit theory of quadratic forms of long-memory linear processes with heavy-tailed GARCH innovations," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 18-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:econdp:2005-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Resources Section, Hitotsubashi University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.