IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v120y2013icp18-33.html
   My bibliography  Save this article

Limit theory of quadratic forms of long-memory linear processes with heavy-tailed GARCH innovations

Author

Listed:
  • Chan, Ngai Hang
  • Zhang, Rong-Mao

Abstract

Let Xt=∑j=0∞cjεt−j be a moving average process with GARCH (1, 1) innovations {εt}. In this paper, the asymptotic behavior of the quadratic form Qn=∑j=1n∑s=1nb(t−s)XtXs is derived when the innovation {εt} is a long-memory and heavy-tailed process with tail index α, where {b(i)} is a sequence of constants. In particular, it is shown that when 1<α<4 and under certain regularity conditions, the limit distribution of Qn converges to a stable random variable with index α/2. However, when α≥4, Qn has an asymptotic normal distribution. These results not only shed light on the singular behavior of the quadratic forms when both long-memory and heavy-tailed properties are present, but also have applications in the inference for general linear processes driven by heavy-tailed GARCH innovations.

Suggested Citation

  • Chan, Ngai Hang & Zhang, Rong-Mao, 2013. "Limit theory of quadratic forms of long-memory linear processes with heavy-tailed GARCH innovations," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 18-33.
  • Handle: RePEc:eee:jmvana:v:120:y:2013:i:c:p:18-33
    DOI: 10.1016/j.jmva.2013.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    2. Ling S., 2003. "Adaptive Estimators and Tests of Stationary and Nonstationary Short- and Long-Memory ARFIMA-GARCH Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 955-967, January.
    3. Kokoszka, Piotr S. & Taqqu, Murad S., 1997. "The asymptotic behavior of quadratic forms in heavy-tailed strongly dependent random variables," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 21-40, February.
    4. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    5. Rong‐Mao Zhang & Zheng‐Yan Lin, 2012. "Limit theory for a general class of GARCH models with just barely infinite variance," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 161-174, January.
    6. Wu, Wei Biao & Shao, Xiaofeng, 2007. "A Limit Theorem For Quadratic Forms And Its Applications," Econometric Theory, Cambridge University Press, vol. 23(5), pages 930-951, October.
    7. Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
    8. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    9. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    10. Francq, Christian & Zakoïan, Jean-Michel, 2006. "Mixing Properties Of A General Class Of Garch(1,1) Models Without Moment Assumptions On The Observed Process," Econometric Theory, Cambridge University Press, vol. 22(5), pages 815-834, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Eunju & Hong, Won-Tak, 2021. "A multivariate HAR-RV model with heteroscedastic errors and its WLS estimation," Economics Letters, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.
    2. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    3. Saidi, Youssef & Zakoian, Jean-Michel, 2006. "Stationarity and geometric ergodicity of a class of nonlinear ARCH models," MPRA Paper 61988, University Library of Munich, Germany, revised 2006.
    4. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, 2012. "Statistical Modeling of Stock Returns: A Historical Survey with Methodological Reflections," DEOS Working Papers 1226, Athens University of Economics and Business.
    5. Antypas, Antonios & Koundouri, Phoebe & Kourogenis, Nikolaos, 2013. "Aggregational Gaussianity and barely infinite variance in financial returns," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 102-108.
    6. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    7. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    8. Toshio Honda, 2013. "Nonparametric quantile regression with heavy-tailed and strongly dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
    9. Peng, Liang & Yao, Qiwei, 2004. "Nonparametric regression under dependent errors with infinite variance," LSE Research Online Documents on Economics 22874, London School of Economics and Political Science, LSE Library.
    10. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    11. Taufer, Emanuele, 2015. "On the empirical process of strongly dependent stable random variables: asymptotic properties, simulation and applications," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 262-271.
    12. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670, June.
    13. Shiqing Ling & Ke Zhu, 2022. "Self-Weighted LSE and Residual-Based QMLE of ARMA-GARCH Models," JRFM, MDPI, vol. 15(2), pages 1-17, February.
    14. Toshio Honda, 2010. "Nonparametric estimation of conditional medians for linear and related processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
    15. Christian Francq & Lajos Horváth, 2011. "Merits and Drawbacks of Variance Targeting in GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 9(4), pages 619-656.
    16. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Tempered fractional Brownian and stable motions of second kind," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 17-27.
    17. Steland Ansgar, 2003. "Jump-preserving monitoring of dependent time series using pilot estimators," Statistics & Risk Modeling, De Gruyter, vol. 21(4), pages 343-366, April.
    18. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    19. Steland, Ansgar, 2003. "Jump-preserving monitoring of dependent time series using pilot estimators," Technical Reports 2004,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:120:y:2013:i:c:p:18-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.