Estimating Smoothness and Optimal Bandwidth for Probability Density Functions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marc Hallin & Lanh T. Tran, 1996. "Kernel density estimation for linear processes: asymptotic normality and bandwidth selection," ULB Institutional Repository 2013/2055, ULB -- Universite Libre de Bruxelles.
- Marc Hallin & Lanh Tran, 1996.
"Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 429-449, September.
- Marc Hallin & Lanh T. Tran, 1996. "Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation," ULB Institutional Repository 2013/127975, ULB -- Universite Libre de Bruxelles.
- Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
- Vyacheslav Vasiliev, 2014. "A truncated estimation method with guaranteed accuracy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 141-163, February.
- Claire Lacour & Pascal Massart & Vincent Rivoirard, 2017. "Estimator Selection: a New Method with Applications to Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 298-335, August.
- Politis, Dimitris N. & Romano, Joseph P., 1999. "Multivariate Density Estimation with General Flat-Top Kernels of Infinite Order," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 1-25, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2015. "Estimators in step regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 124-129.
- Schick, Anton & Wefelmeyer, Wolfgang, 2006. "Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1756-1760, October.
- Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
- Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
- Toshio Honda, 2009.
"Nonparametric density estimation for linear processes with infinite variance,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 413-439, June.
- Honda, Toshio & 本田, 敏雄, 2006. "Nonparametric Density Estimation for Linear Processes with Infinite Variance," Discussion Papers 2005-13, Graduate School of Economics, Hitotsubashi University.
- Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
- Horváth, Lajos & Rice, Gregory & Whipple, Stephen, 2016. "Adaptive bandwidth selection in the long run covariance estimator of functional time series," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 676-693.
- Van Ha Hoang & Thanh Mai Pham Ngoc & Vincent Rivoirard & Viet Chi Tran, 2022. "Nonparametric estimation of the fragmentation kernel based on a partial differential equation stationary distribution approximation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 4-43, March.
- Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Degui Li & Oliver Linton & Zudi Lu, 2012.
"A Flexible Semiparametric Model for Time Series,"
Monash Econometrics and Business Statistics Working Papers
17/12, Monash University, Department of Econometrics and Business Statistics.
- Degui Li & Oliver Linton & Zudi Lu, 2012. "A flexible semiparametric model for time series," CeMMAP working papers CWP28/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Degui Li & Oliver Linton & Zudi Lu, 2012. "A flexible semiparametric model for time series," CeMMAP working papers 28/12, Institute for Fiscal Studies.
- Schennach, Susanne & White, Halbert & Chalak, Karim, 2012.
"Local indirect least squares and average marginal effects in nonseparable structural systems,"
Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
- Susanne Schennach & Halbert White & Karim Chalak, 2007. "Local Indirect Least Squares and Average Marginal Effects in Nonseparable Structural Systems," Boston College Working Papers in Economics 680, Boston College Department of Economics, revised 26 Dec 2009.
- Hassan Doosti & Peter Hall, 2016. "Making a non-parametric density estimator more attractive, and more accurate, by data perturbation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 445-462, March.
- José E. Chacón & Carlos Tenreiro, 2012. "Exact and Asymptotically Optimal Bandwidths for Kernel Estimation of Density Functionals," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 523-548, September.
- Holzmann, Hajo & Bissantz, Nicolai & Munk, Axel, 2007. "Density testing in a contaminated sample," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 57-75, January.
- Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
- Hong, Seok Young & Linton, Oliver, 2020.
"Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff,"
Journal of Econometrics, Elsevier, vol. 219(2), pages 389-424.
- Hong, S-Y. & Linton, O., 2018. "Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff," Cambridge Working Papers in Economics 1877, Faculty of Economics, University of Cambridge.
- Li, Degui & Lu, Zudi & Linton, Oliver, 2012.
"Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates,"
Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
- Degui Li & Zudi Lu & Oliver Linton, 2011. "Local Linear Fitting Under Near Epoch Dependence: Uniform consistency with Convergence Rates," Monash Econometrics and Business Statistics Working Papers 16/11, Monash University, Department of Econometrics and Business Statistics.
- Gao, Min & Yang, Wenzhi & Wu, Shipeng & Yu, Wei, 2022. "Asymptotic normality of residual density estimator in stationary and explosive autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
- Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
- Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
More about this item
Keywords
non-parametric kernel density estimators; adaptive density estimators; mean square and almost surely convergence; rate of convergence; smoothness class;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2022:i:1:p:3-49:d:1016627. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.