IDEAS home Printed from https://ideas.repec.org/p/pqs/wpaper/0232005.html
   My bibliography  Save this paper

Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems

Author

Listed:
  • Luis G. Gorostiza

    (Departamento de Mathematicas, Centro de Investigacion y de Estudios Avanzados, LRSP)

  • Reyla A. Navarro

    (Departamento de Fisica y Mathematicas, Universidad de Las Americas)

  • Eliane R. Rodrigues

    (Instituto de Mathematicas, UNAM)

Abstract

Several long-range dependence, self-similar Gaussian processes arise from asymptotics of some classes of spatially distributed particle systems and superprocesses. The simplest examples are fractional Brownian motion and sub-fractional fractional Brownian motion, the latter being intermediate between Brownian motion and fractional Brownian motion. In this paper we focus mainly on long-range dependence processes that arise from occupation time fluctuations of immigration particle systems with or without branching, and we study their properties. Some long-range dependence non-Gaussian processes that appear in a similar way are also mentioned.

Suggested Citation

  • Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.
  • Handle: RePEc:pqs:wpaper:0232005
    as

    Download full text from publisher

    File URL: http://www.repad.org/ca/on/lrsp/TRS401.pdf
    File Function: First version, 2004
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sottinen Tommi & Valkeila Esko, 2003. "On arbitrage and replication in the fractional Black–Scholes pricing model," Statistics & Risk Modeling, De Gruyter, vol. 21(2), pages 93-108, February.
    2. Enriquez, Nathanaël, 2004. "A simple construction of the fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 203-223, February.
    3. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2004. "Sub-fractional Brownian motion and its relation to occupation times," RePAd Working Paper Series lrsp-TRS376, Département des sciences administratives, UQO.
    4. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    5. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Cases of Large and Critical Dimensions," RePAd Working Paper Series lrsp-TRS404, Département des sciences administratives, UQO.
    6. Klüppelberg, Claudia & Kühn, Christoph, 2004. "Fractional Brownian motion as a weak limit of Poisson shot noise processes--with applications to finance," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 333-351, October.
    7. Gorostiza, Luis G. & Lopez-Mimbela, J. Alfredo, 1992. "The demographic variation process of multitype branching random fields," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 102-116, April.
    8. Cioczek-Georges, R. & Mandelbrot, B. B., 1996. "Alternative micropulses and fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 64(2), pages 143-152, November.
    9. Bojdecki, Tomasz & Gorostiza, Luis G. & Talarczyk, Anna, 2004. "Sub-fractional Brownian motion and its relation to occupation times," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 405-419, October.
    10. Hurvich, Clifford M. & Soulier, Philippe, 2002. "Testing For Long Memory In Volatility," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1291-1308, December.
    11. Deuschel, Jean-Dominique & Wang, Kongming, 1994. "Large deviations for the occupation time functional of a Poisson system of independent Brownian particles," Stochastic Processes and their Applications, Elsevier, vol. 52(2), pages 183-209, August.
    12. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    13. López-Mimbela, J. Alfredo, 1992. "Fluctuation limits of multitype branching random fields," Journal of Multivariate Analysis, Elsevier, vol. 40(1), pages 56-83, January.
    14. Nieminen, Ari, 2004. "Fractional Brownian motion and Martingale-differences," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 1-10, October.
    15. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Case of Long-Range Dependence," RePAd Working Paper Series lrsp-TRS402, Département des sciences administratives, UQO.
    16. Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
    17. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojdecki, Tomasz & Talarczyk, Anna, 2012. "Particle picture interpretation of some Gaussian processes related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2134-2154.
    2. Slominski, Leszek & Ziemkiewicz, Bartosz, 2009. "On weak approximations of integrals with respect to fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 543-552, February.
    3. Garzón, J. & Gorostiza, L.G. & León, J.A., 2009. "A strong uniform approximation of fractional Brownian motion by means of transport processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3435-3452, October.
    4. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2005. "A Long Range Dependence Stable Process and an Infinite Variance Branching System," RePAd Working Paper Series lrsp-TRS425, Département des sciences administratives, UQO.
    5. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    6. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    7. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Cases of Large and Critical Dimensions," RePAd Working Paper Series lrsp-TRS404, Département des sciences administratives, UQO.
    8. Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    9. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 1-18, January.
    10. Nenghui Kuang & Huantian Xie, 2015. "Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 75-91, February.
    11. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Case of Long-Range Dependence," RePAd Working Paper Series lrsp-TRS402, Département des sciences administratives, UQO.
    12. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems II: Critical and large dimensions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 19-35, January.
    13. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    14. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    15. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    16. Cheng, Ziling, 2024. "Occupation times for age-structured branching processes," Statistics & Probability Letters, Elsevier, vol. 211(C).
    17. Swanson, Jason, 2011. "Fluctuations of the empirical quantiles of independent Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 479-514, March.
    18. Ngai Chan & Rongmao Zhang, 2009. "M-estimation in nonparametric regression under strong dependence and infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 391-411, June.
    19. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    20. Bodo Herzog, 2023. "Fractional Stochastic Search Algorithms: Modelling Complex Systems via AI," Mathematics, MDPI, vol. 11(9), pages 1-11, April.

    More about this item

    Keywords

    long-range dependence; long memory; self-similar Gaussian process; fractional Brownian motion; sub-fractional Brownian motion; branching particle system; immigration; superprocess; occupation time; fluctuation;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pqs:wpaper:0232005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Calmes (email available below). General contact details of provider: https://edirc.repec.org/data/dsuqoca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.