Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation
Author
Abstract
Suggested Citation
DOI: 10.1007/BF00050847
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Marc Hallin & Lanh T. Tran, 1996. "Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation," ULB Institutional Repository 2013/127975, ULB -- Universite Libre de Bruxelles.
References listed on IDEAS
- Masry, Elias & Györfi, László, 1987. "Strong consistency and rates for recursive probability density estimators of stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 79-93, June.
- P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
- P. M. Robinson, 1987. "Time Series Residuals With Application To Probability Density Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 329-344, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
- Toshio Honda, 2009.
"Nonparametric density estimation for linear processes with infinite variance,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 413-439, June.
- Honda, Toshio & 本田, 敏雄, 2006. "Nonparametric Density Estimation for Linear Processes with Infinite Variance," Discussion Papers 2005-13, Graduate School of Economics, Hitotsubashi University.
- Schick, Anton & Wefelmeyer, Wolfgang, 2006. "Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1756-1760, October.
- Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2015. "Estimators in step regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 124-129.
- Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
- Dimitris N. Politis & Peter F. Tarassenko & Vyacheslav A. Vasiliev, 2022. "Estimating Smoothness and Optimal Bandwidth for Probability Density Functions," Stats, MDPI, vol. 6(1), pages 1-20, December.
- Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004.
"Kernel density estimation for spatial processes: the L1 theory,"
Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
- Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Kernel density estimation for spatial processes: the L1 theory," ULB Institutional Repository 2013/2127, ULB -- Universite Libre de Bruxelles.
- Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
- Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
- Carbon, Michel & Garel, Bernard & Tran, Lanh Tat, 1997. "Frequency polygons for weakly dependent processes," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 1-13, April.
- Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
- Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
- Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
- Ichimura, Hidehiko & Todd, Petra E., 2007.
"Implementing Nonparametric and Semiparametric Estimators,"
Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74,
Elsevier.
- Hidehiko Ichimura & Petra E. Todd, 2006. "Implementing Nonparametric and Semiparametric Estimators," CIRJE F-Series CIRJE-F-452, CIRJE, Faculty of Economics, University of Tokyo.
- Battisti, Michele & Gatto, Massimo Del & Parmeter, Christopher F., 2022. "Skill-biased technical change and labor market inefficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
- Richard H. Clarida & Mark P. Taylor, 2003.
"Nonlinear Permanent - Temporary Decompositions in Macroeconomics and Finance,"
Economic Journal, Royal Economic Society, vol. 113(486), pages 125-139, March.
- Clarida, Richard H. & Mark P. Taylor, 2002. "Nonlinear Permanent -Temporary Decompositions in Macroeconomics and Finance," Royal Economic Society Annual Conference 2002 51, Royal Economic Society.
- Bonsoo Koo & Oliver Linton, 2010.
"Semiparametric Estimation of Locally Stationary Diffusion Models,"
STICERD - Econometrics Paper Series
551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Koo, Bonsoo & Linton, Oliver, 2010. "Semiparametric estimation of locally stationary diffusion models," LSE Research Online Documents on Economics 58186, London School of Economics and Political Science, LSE Library.
- Zhijie Xiao & Oliver Linton & Raymond J. Carroll & E. Mammen, 2002.
"More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors,"
Cowles Foundation Discussion Papers
1375, Cowles Foundation for Research in Economics, Yale University.
- Raymond J Carroll & Oliver Linton & Enno Mammen & Zhijie Xiao, 2002. "More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors," STICERD - Econometrics Paper Series 435, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Carroll, Raymond J & Linton, Oliver & Mammen, Enno & Xiao, Zhijie, 2002. "More efficient kernel estimation in nonparametric regression with autocorrelated errors," LSE Research Online Documents on Economics 2017, London School of Economics and Political Science, LSE Library.
- Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010.
"Combining Nonparametric and Optimal Linear Time Series Predictions,"
Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
- Sophie DABO-NIANG & Christian FRANCQ & Jean-Michel ZAKOIAN, 2009. "Combining Nonparametric and Optimal Linear Time Series Predictions," Working Papers 2009-18, Center for Research in Economics and Statistics.
- Karlsen, Hans Arnfinn & Tjostheim, Dag, 1998. "Nonparametric estimation in null recurrent times series," SFB 373 Discussion Papers 1998,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Whang, Yoon-Jae & Linton, Oliver, 1999.
"The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series,"
Journal of Econometrics, Elsevier, vol. 91(1), pages 1-42, July.
- Yoon-Jae Whang & Oliver Linton, 1997. "The Asymptotic Distribution of Nonparametric Estimates of the Lyapunov Exponent for Stochastic Time Series," Cowles Foundation Discussion Papers 1130R, Cowles Foundation for Research in Economics, Yale University.
- Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017.
"Nonparametric estimation of dynamic discrete choice models for time series data,"
Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
- Byeong U. Park & Leopold Simar & Valentin Zelenyuk, 2016. "Nonparametric Estimation of Dynamic Discrete Choice Models for Time Series Data," CEPA Working Papers Series WP062016, School of Economics, University of Queensland, Australia.
- Park, Byeong U. & Simar, Leopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," LIDAM Reprints ISBA 2017011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
- Martin Evans and Richard K. Lyons, 2002. "Are Different-Currency Assets Imperfect Substitutes?," Working Papers gueconwpa~02-02-12, Georgetown University, Department of Economics.
- Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
- Chen, Jia & Li, Degui & Linton, Oliver & Lu, Zudi, 2016.
"Semiparametric dynamic portfolio choice with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 194(2), pages 309-318.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric dynamic portfolio choice with multiple conditioning variables," CeMMAP working papers CWP07/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric Dynamic Portfolio Choice with Multiple Conditioning Variables," Discussion Papers 15/01, Department of Economics, University of York.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric dynamic portfolio choice with multiple conditioning variables," CeMMAP working papers 07/15, Institute for Fiscal Studies.
More about this item
Keywords
Density estimation; linear process; kernel; bandwidth; mean square error;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:48:y:1996:i:3:p:429-449. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.