IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v106y2015icp262-271.html
   My bibliography  Save this article

On the empirical process of strongly dependent stable random variables: asymptotic properties, simulation and applications

Author

Listed:
  • Taufer, Emanuele

Abstract

This paper analyzes the limit properties of the empirical process of α-stable random variables with long range dependence. The α-stable random variables are constructed by non-linear transformations of bivariate sequences of strongly dependent gaussian processes. The approach followed allows an analysis of the empirical process by means of expansions in terms of bivariate Hermite polynomials for the full range 0<α<2. A weak uniform reduction principle is provided and it is shown that the limiting process is gaussian. The results of the paper differ substantially from those available for empirical processes obtained by stable moving averages with long memory. An application to goodness-of-fit testing is discussed.

Suggested Citation

  • Taufer, Emanuele, 2015. "On the empirical process of strongly dependent stable random variables: asymptotic properties, simulation and applications," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 262-271.
  • Handle: RePEc:eee:stapro:v:106:y:2015:i:c:p:262-271
    DOI: 10.1016/j.spl.2015.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215002734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikolai Leonenko & Ludmila Sakhno, 2001. "On the Kaplan–Meier Estimator of Long-Range Dependent Sequences," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 17-40, January.
    2. Weron, Rafal, 1996. "Correction to: "On the Chambers–Mallows–Stuck Method for Simulating Skewed Stable Random Variables"," MPRA Paper 20761, University Library of Munich, Germany, revised 2010.
    3. Weron, Rafal, 1996. "On the Chambers-Mallows-Stuck method for simulating skewed stable random variables," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 165-171, June.
    4. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
    5. Hira Koul & Nao Mimoto & Donatas Surgailis, 2013. "Goodness-of-fit tests for long memory moving average marginal density," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 205-224, February.
    6. Herold Dehling & Aeneas Rooch & Murad S. Taqqu, 2013. "Non-Parametric Change-Point Tests for Long-Range Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 153-173, March.
    7. N. N. Leonenko & Emanuele Taufer, 2001. "Asymptotic properties of LSE in multivariate continuous regression with long memory stationary errors," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 54-71.
    8. Fox, Robert & Taqqu, Murad S., 1987. "Multiple stochastic integrals with dependent integrators," Journal of Multivariate Analysis, Elsevier, vol. 21(1), pages 105-127, February.
    9. Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
    10. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    2. J.-F. Chamayou, 2001. "Pseudo random numbers for the Landau and Vavilov distributions," Computational Statistics, Springer, vol. 16(1), pages 131-152, March.
    3. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    4. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    5. John C. Frain, 2007. "Small sample power of tests of normality when the alternative is an alpha-stable distribution," Trinity Economics Papers tep0207, Trinity College Dublin, Department of Economics.
    6. Toshio Honda, 2013. "Nonparametric quantile regression with heavy-tailed and strongly dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
    7. Harry Pavlopoulos & George Chronis, 2023. "On highly skewed fractional log‐stable noise sequences and their application," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 337-358, July.
    8. Peng, Liang & Yao, Qiwei, 2004. "Nonparametric regression under dependent errors with infinite variance," LSE Research Online Documents on Economics 22874, London School of Economics and Political Science, LSE Library.
    9. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    10. Guarcello, C., 2021. "Lévy noise effects on Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    11. Mbakob Yonkeu, R. & David, Afungchui, 2022. "Coherence and stochastic resonance in the fractional-birhythmic self-sustained system subjected to fractional time-delay feedback and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    12. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    13. Danish A. Ahmed & Sergei V. Petrovskii & Paulo F. C. Tilles, 2018. "The “Lévy or Diffusion” Controversy: How Important Is the Movement Pattern in the Context of Trapping?," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    14. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    15. Toshio Honda, 2010. "Nonparametric estimation of conditional medians for linear and related processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
    16. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Tempered fractional Brownian and stable motions of second kind," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 17-27.
    17. Wang, Xiaolong & Feng, Jing & Liu, Qi & Li, Yongge & Xu, Yong, 2022. "Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    18. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    19. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of expectations of functions of a stable L\'evy process and its extremum," Papers 2209.12349, arXiv.org.
    20. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:106:y:2015:i:c:p:262-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.