IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1581-1593.html
   My bibliography  Save this article

Stationary bootstrap for kernel density estimators under ψ-weak dependence

Author

Listed:
  • Hwang, Eunju
  • Shin, Dong Wan

Abstract

Stationary bootstrap technique is applied for kernel-type estimators of densities and their derivatives of stationary ψ-weakly dependent processes. The ψ-weak dependence, introduced by Doukhan & Louhichi [Doukhan, P., Louhichi, S., 1999. A new weak dependence condition and applications to moment inequalities. Stochastic Processes and their Applications 84, 313–342], unifies weak dependence conditions such as mixing, association, Gaussian sequences and Bernoulli shifts. The class of ψ-weakly dependent processes includes all weakly dependent processes of interest in statistics, containing such important processes as GARCH processes, threshold autoregressive processes, and bilinear processes. We obtain asymptotic validity for the stationary bootstrap in the density and derivatives estimation. A Monte-Carlo experiment compares the proposed method with other methods. Log returns of daily Dow Jones index are analyzed by the proposed method.

Suggested Citation

  • Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1581-1593
    DOI: 10.1016/j.csda.2011.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003586
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tran, Lanh Tat, 1992. "Kernel density estimation for linear processes," Stochastic Processes and their Applications, Elsevier, vol. 41(2), pages 281-296, June.
    2. Yatchew, Adonis & Hardle, Wolfgang, 2006. "Nonparametric state price density estimation using constrained least squares and the bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 579-599, August.
    3. Anders Rygh Swensen, 2003. "Bootstrapping unit root tests for integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 99-126, January.
    4. Yvonne H. S. Ho & Stephen M. S. Lee, 2008. "Iterated Bootstrap‐t Confidence Intervals for Density Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 295-308, June.
    5. Marc Hallin & Lanh T. Tran, 1996. "Kernel density estimation for linear processes: asymptotic normality and bandwidth selection," ULB Institutional Repository 2013/2055, ULB -- Universite Libre de Bruxelles.
    6. Kim, Tae Yoon & Cox, Dennis D., 1996. "Uniform strong consistency of kernel density estimators under dependence," Statistics & Probability Letters, Elsevier, vol. 26(2), pages 179-185, February.
    7. Marc Hallin & Lanh Tran, 1996. "Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 429-449, September.
    8. Chen, Jia, 2008. "Asymptotics of kernel density estimators on weakly associated random fields," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3230-3237, December.
    9. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    10. Paul Doukhan & Sana Louhichi, 2001. "Functional Estimation of a Density Under a New Weak Dependence Condition," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 325-341, June.
    11. Li, Fuchun & Tkacz, Greg, 2006. "A consistent bootstrap test for conditional density functions with time-series data," Journal of Econometrics, Elsevier, vol. 133(2), pages 863-886, August.
    12. Roussas, George G., 2000. "Asymptotic normality of the kernel estimate of a probability density function under association," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 1-12, October.
    13. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(6), pages 995-1045, December.
    14. Schick, Anton & Wefelmeyer, Wolfgang, 2006. "Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1756-1760, October.
    15. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    16. Parker, Cameron & Paparoditis, Efstathios & Politis, Dimitris N., 2006. "Unit root testing via the stationary bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 601-638, August.
    17. Doukhan, Paul & Neumann, Michael H., 2007. "Probability and moment inequalities for sums of weakly dependent random variables, with applications," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 878-903, July.
    18. Coulon-Prieur, Clémentine & Doukhan, Paul, 2000. "A triangular central limit theorem under a new weak dependence condition," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 61-68, March.
    19. Tran, Lanh Tat, 1990. "Kernel density estimation under dependence," Statistics & Probability Letters, Elsevier, vol. 10(3), pages 193-201, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Eunju & Shin, Dong Wan, 2015. "Stationary bootstrapping for semiparametric panel unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 14-25.
    2. Barbeito, Inés & Cao, Ricardo, 2016. "Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 130-147.
    3. Yan Li & Liangjun Su & Yuewu Xu, 2015. "A Combined Approach to the Inference of Conditional Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 203-220, April.
    4. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    5. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.
    6. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    2. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
    3. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2015. "Estimators in step regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 124-129.
    4. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.
    5. Schick, Anton & Wefelmeyer, Wolfgang, 2006. "Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1756-1760, October.
    6. Berkes, István & Hörmann, Siegfried & Horváth, Lajos, 2008. "The functional central limit theorem for a family of GARCH observations with applications," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2725-2730, November.
    7. Hwang, Eunju & Shin, Dong Wan, 2015. "Stationary bootstrapping for semiparametric panel unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 14-25.
    8. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    9. Smeekes, Stephan & Taylor, A.M. Robert, 2012. "Bootstrap Union Tests For Unit Roots In The Presence Of Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 28(2), pages 422-456, April.
    10. Franz C. Palm & Stephan Smeekes & Jean‐Pierre Urbain, 2008. "Bootstrap Unit‐Root Tests: Comparison and Extensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 371-401, March.
    11. Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
    12. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
    13. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    14. Stephan Smeekes, 2013. "Detrending Bootstrap Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 869-891, November.
    15. Li, Degui & Lu, Zudi & Linton, Oliver, 2010. "Loch linear fitting under near epoch dependence: uniform consistency with convergence rate," LSE Research Online Documents on Economics 58160, London School of Economics and Political Science, LSE Library.
    16. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    17. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670, June.
    18. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
    19. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    20. Nassira Menni & Abdelkader Tatachak, 2018. "A note on estimating the conditional expectation under censoring and association: strong uniform consistency," Statistical Papers, Springer, vol. 59(3), pages 1009-1030, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1581-1593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.