IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00130449.html
   My bibliography  Save this paper

Values on regular games under Kirchhoff's laws

Author

Listed:
  • Fabien Lange

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

In cooperative game theory, the Shapley value is a central notion defining a rational way to share the total worth of a game among players. In this paper, we address a general framework, namely regular set systems, where the set of feasible coalitions forms a poset where all maximal chains have the same length. We first show that previous definitions and axiomatizations of the Shaphey value proposed by Faigle and Kern and Bilbao and Edelman still work. our main contribution is then to propose a new axiomatization avoiding the hierarchical strength axiom of Faigle and Kern, and considering a new way to define the symmetry among players. Borrowing ideas from electric networks theory, we show that our symmetry axiom and the classical efficiency axiom correspond actually to the two Kirchhoff's laws in the resistor circuit associated to the Hasse diagram of feasible coalitions. We finally work out a weak form of the monotonicity axiom which is satisfied by the proposed value.

Suggested Citation

  • Fabien Lange & Michel Grabisch, 2006. "Values on regular games under Kirchhoff's laws," Post-Print halshs-00130449, HAL.
  • Handle: RePEc:hal:journl:halshs-00130449
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00130449
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00130449/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pradeep Dubey & Abraham Neyman & Robert J. Weber, 1979. "Value Theory without Efficiency," Cowles Foundation Discussion Papers 513, Cowles Foundation for Research in Economics, Yale University.
    2. Michel Grabisch & Jean-Luc Marichal & Marc Roubens, 2000. "Equivalent Representations of Set Functions," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 157-178, May.
    3. Hwang, Yan-An & Liao, Yu-Hsien, 2008. "Potential approach and characterizations of a Shapley value in multi-choice games," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 321-335, November.
    4. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    5. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the shapley value: a new approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 153-167, February.
    6. René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
    7. Pradeep Dubey & Abraham Neyman & Robert James Weber, 1981. "Value Theory Without Efficiency," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 122-128, February.
    8. Robert J. Weber, 1977. "Probabilistic Values for Games," Cowles Foundation Discussion Papers 471R, Cowles Foundation for Research in Economics, Yale University.
    9. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    10. Calvo, Emilio & Lasaga, Javier & van den Nouweland, Anne, 1999. "Values of games with probabilistic graphs," Mathematical Social Sciences, Elsevier, vol. 37(1), pages 79-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Post-Print hal-01302377, HAL.
    2. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    3. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    4. M. Josune Albizuri & Satoshi Masuya & José M. Zarzuelo, 2022. "Characterization of a value for games under restricted cooperation," Annals of Operations Research, Springer, vol. 318(2), pages 773-785, November.
    5. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    6. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    7. Selcuk, O. & Talman, A.J.J., 2013. "Games With General Coalitional Structure," Other publications TiSEM 8d356e38-cdce-41e0-b3dd-a, Tilburg University, School of Economics and Management.
    8. Michel Grabisch & Peter Sudhölter, 2014. "The positive core for games with precedence constraints," Documents de travail du Centre d'Economie de la Sorbonne 14036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Encarnación Algaba & René Brink & Chris Dietz, 2017. "Power Measures and Solutions for Games Under Precedence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 1008-1022, March.
    10. Michel Grabisch & Peter Sudhölter, 2016. "Characterizations of solutions for games with precedence constraints," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01297600, HAL.
    11. repec:hal:pseose:hal-01297600 is not listed on IDEAS
    12. Honda, Aoi & Grabisch, Michel, 2008. "An axiomatization of entropy of capacities on set systems," European Journal of Operational Research, Elsevier, vol. 190(2), pages 526-538, October.
    13. Sylvain Béal & Issofa Moyouwou & Eric Rémila & Phillippe Solal, 2018. "Cooperative games on intersection closed systems and the Shapley value," Working Papers 2018-06, CRESE.
    14. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    15. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    16. Selcuk, O. & Talman, A.J.J., 2013. "Games With General Coalitional Structure," Other publications TiSEM 8d356e38-cdce-41e0-b3dd-a, Tilburg University, School of Economics and Management.
    17. René van den Brink, 2017. "Games with a Permission Structure: a survey on generalizations and applications," Tinbergen Institute Discussion Papers 17-016/II, Tinbergen Institute.
    18. Baron, Richard & Béal, Sylvain & Remila, Eric & Solal, Philippe, 2008. "Average tree solutions for graph games," MPRA Paper 10189, University Library of Munich, Germany.
    19. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    20. Emilio Calvo & Esther Gutiérrez-López, 2015. "The value in games with restricted cooperation," Discussion Papers in Economic Behaviour 0115, University of Valencia, ERI-CES.
    21. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    22. Encarnacion Algaba & René van den Brink & Chris Dietz, 2015. "Power Measures and Solutions for Games under Precedence Constraints," Tinbergen Institute Discussion Papers 15-007/II, Tinbergen Institute.
    23. Aguilera, Néstor E. & Di Marco, Silvia C. & Escalante, Mariana S., 2010. "The Shapley value for arbitrary families of coalitions," European Journal of Operational Research, Elsevier, vol. 204(1), pages 125-138, July.
    24. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujimoto, Katsushige & Kojadinovic, Ivan & Marichal, Jean-Luc, 2006. "Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices," Games and Economic Behavior, Elsevier, vol. 55(1), pages 72-99, April.
    2. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Other publications TiSEM d863606f-a58a-4f92-894d-e, Tilburg University, School of Economics and Management.
    3. Geoffroy de Clippel & Roberto Serrano, 2008. "Marginal Contributions and Externalities in the Value," Econometrica, Econometric Society, vol. 76(6), pages 1413-1436, November.
    4. Faigle, U. & Grabisch, M. & Heyne, M., 2010. "Monge extensions of cooperation and communication structures," European Journal of Operational Research, Elsevier, vol. 206(1), pages 104-110, October.
    5. Michel Grabisch & Lijue Xie, 2008. "The core of games on distributive lattices: how to share benefits in a hierarchy," Post-Print halshs-00344802, HAL.
    6. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    7. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    8. Michel Grabisch & Lijue Xie, 2011. "The restricted core of games on distributive lattices: how to share benefits in a hierarchy," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 189-208, April.
    9. Federico Valenciano & Annick Laruelle, 2003. "Potential, Value And Probability," Working Papers. Serie AD 2003-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    10. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    11. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
    12. Ciftci, B.B. & Dimitrov, D.A., 2006. "Stable Coalition Structures in Simple Games with Veto Control," Other publications TiSEM fd2410e3-8e9d-4319-86fb-b, Tilburg University, School of Economics and Management.
    13. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Other publications TiSEM d863606f-a58a-4f92-894d-e, Tilburg University, School of Economics and Management.
    14. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.
    15. Carreras, Francesc & Giménez, José Miguel, 2010. "Semivalues: power,potential and multilinear extensions," MPRA Paper 27620, University Library of Munich, Germany.
    16. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    17. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    18. Labreuche, Christophe, 2011. "Interaction indices for games on combinatorial structures with forbidden coalitions," European Journal of Operational Research, Elsevier, vol. 214(1), pages 99-108, October.
    19. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    20. László Á. Kóczy, 2016. "Power Indices When Players can Commit to Reject Coalitions," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 33(1), pages 77-91, August.

    More about this item

    Keywords

    regular values; Kirchhoff's laws; probabilistic efficient values; Shapley value; regular games; Regular set systems; lois de Kirchhoff; jeu régulier; Système d'ensemble; valeur de Shapley; valeur probabiliste; axiome d'anonymat; axiome d'efficacité;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00130449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.