IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01413033.html
   My bibliography  Save this paper

Discounted Tree Solutions

Author

Listed:
  • Sylvain Béal

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Eric Rémila

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

This article introduces a discount parameter and a weight function in Myerson's (1977) classical model of cooperative games with restrictions on cooperation. The discount parameter aims to reflect the time preference of the agents while the weight function aims to reflect the importance of each node of a graph. We provide axiomatic characterizations of two types of solution that are inspired by the hierarchical outcomes (Demange, 2004).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sylvain Béal & Eric Rémila & Philippe Solal, 2016. "Discounted Tree Solutions," Post-Print halshs-01413033, HAL.
  • Handle: RePEc:hal:journl:halshs-01413033
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    2. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    3. Lindelauf, R.H.A. & Hamers, H.J.M. & Husslage, B.G.M., 2013. "Cooperative game theoretic centrality analysis of terrorist networks: The cases of Jemaah Islamiyah and Al Qaeda," European Journal of Operational Research, Elsevier, vol. 229(1), pages 230-238.
    4. P. Herings & Gerard Laan & Dolf Talman, 2005. "The positional power of nodes in digraphs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 24(3), pages 439-454, June.
    5. Sylvain Béal & André Casajus & Frank Huettner & Eric Rémila & Philippe Solal, 2016. "Characterizations of weighted and equal division values," Theory and Decision, Springer, vol. 80(4), pages 649-667, April.
    6. Erik Ansink & Hans-Peter Weikard, 2012. "Sequential sharing rules for river sharing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(2), pages 187-210, February.
    7. González–Arangüena, Enrique & Manuel, Conrado Miguel & del Pozo, Mónica, 2015. "Values of games with weighted graphs," European Journal of Operational Research, Elsevier, vol. 243(1), pages 248-257.
    8. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    9. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    10. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    11. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    12. Khmelnitskaya, Anna & Talman, Dolf, 2014. "Tree, web and average web values for cycle-free directed graph games," European Journal of Operational Research, Elsevier, vol. 235(1), pages 233-246.
    13. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    14. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    15. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    16. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    17. Ulrich Faigle & Michel Grabisch, 2012. "Values for Markovian coalition processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 51(3), pages 505-538, November.
    18. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    19. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    20. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    21. repec:hal:pseose:halshs-00749950 is not listed on IDEAS
    22. Ramón Flores & Elisenda Molina & Juan Tejada, 2014. "Pyramidal values," Annals of Operations Research, Springer, vol. 217(1), pages 233-252, June.
    23. Paul A. Samuelson, 1937. "A Note on Measurement of Utility," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 4(2), pages 155-161.
    24. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    25. Calvo, Emilio & Lasaga, Javier & van den Nouweland, Anne, 1999. "Values of games with probabilistic graphs," Mathematical Social Sciences, Elsevier, vol. 37(1), pages 79-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "Axiomatization of an allocation rule for ordered tree TU-games," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 132-140.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2022. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 818-849, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    2. González–Arangüena, E. & Manuel, C. & Owen, G. & del Pozo, M., 2017. "The within groups and the between groups Myerson values," European Journal of Operational Research, Elsevier, vol. 257(2), pages 586-600.
    3. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    4. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    5. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "The sequential equal surplus division for sharing a river," MPRA Paper 37346, University Library of Munich, Germany.
    6. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "Axiomatization of an allocation rule for ordered tree TU-games," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 132-140.
    7. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    8. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    9. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    10. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    11. Sylvain Béal & Eric Rémila & Philippe Solal, 2012. "Compensations in the Shapley value and the compensation solutions for graph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 157-178, February.
    12. Sylvain Béal & Eric Rémila & Philippe Solal, 2022. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 818-849, May.
    13. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, September.
    14. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    15. Surajit Borkotokey & Sujata Gowala & Rajnish Kumar, 2023. "The Expected Shapley value on a class of probabilistic games," Papers 2308.03489, arXiv.org.
    16. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    17. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2012. "The Sequential Equal Surplus Division for Sharing International Rivers with Bifurcations," Working Papers 2012-02, CRESE.
    18. van den Brink, René, 2012. "Efficiency and collusion neutrality in cooperative games and networks," Games and Economic Behavior, Elsevier, vol. 76(1), pages 344-348.
    19. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    20. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.

    More about this item

    Keywords

    weight function; discounted tree solutions; Graph games; generalized standardness; δ-reducing agent.; discount parameter; invariance with respect to cone amalgamation;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01413033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.