IDEAS home Printed from https://ideas.repec.org/p/crb/wpaper/2018-05.html
   My bibliography  Save this paper

Harsanyi power solutions for cooperative games on voting structures

Author

Listed:
  • Encarnaciön Algaba

    (Matematica Aplicada II and Instituto de Matematicas de la Universidad de Sevilla, Escuela Superior de Ingenieros, Sevilla, Spain)

  • Sylvain Béal

    (Université de Bourgogne Franche-Comté, CRESE)

  • Eric Rémila

    (Université de Saint-Etienne, Gate)

  • Phillippe Solal

    (Université de Saint-Etienne, Gate)

Abstract

This paper deals with Harsanyi power solutions for cooperative games in which partial cooperation is based on specific union stable systems given by the winning coalitions derived from a voting game. This framework allows for analyzing new and real situations in which there exists a feedback between the economic influence of each coalition of agents and its political power. We provide an axiomatic characterization of the Harsanyi power solutions on the subclass of union stable systems arisen from the winning coalitions from a voting game when the influence is determined by a power index. In particular, we establish comparable axiomatizations, in this context, when considering the Shapley-Shubik power index, the Banzhaf index and the Equal division power index which reduces to the Myerson value on union stable systems. Finally, a new characterization for the Harsanyi power solutions on the whole class of union stable systems is provided and, as a consequence, a characterization of the Myerson value is obtained when the equal power measure is considered.

Suggested Citation

  • Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
  • Handle: RePEc:crb:wpaper:2018-05
    as

    Download full text from publisher

    File URL: https://crese.univ-fcomte.fr/uploads/wp/WP-2018-05.pdf
    File Function: First version, 2018
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stéphane Gonzalez & Alain Marciano & Philippe Solal, 2019. "The social cost problem, rights, and the (non)empty core," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 21(2), pages 347-365, April.
    2. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    3. Annick Laruelle & Federico Valenciano, 2001. "Shapley-Shubik and Banzhaf Indices Revisited," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 89-104, February.
    4. René Brink, 2012. "On hierarchies and communication," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 721-735, October.
    5. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2000. "The position value for union stable systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 221-236, November.
    6. René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
    7. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    8. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    9. Encarnación Algaba & René Brink & Chris Dietz, 2018. "Network Structures with Hierarchy and Communication," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 265-282, October.
    10. Jean J. M. Derks & Hans H. Haller, 1999. "Null Players Out? Linear Values For Games With Variable Supports," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 301-314.
    11. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    12. Feltkamp, Vincent, 1995. "Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(2), pages 179-186.
    13. Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
    14. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    15. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    16. E. Algaba & J. M. Bilbao & J. J. López, 2004. "The position value in communication structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 465-477, July.
    17. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    18. Encarnación Algaba & René Brink & Chris Dietz, 2017. "Power Measures and Solutions for Games Under Precedence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 1008-1022, March.
    19. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    20. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    21. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Encarnación Algaba & Stefano Moretti & Eric Rémila & Philippe Solal, 2021. "Lexicographic solutions for coalitional rankings," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(4), pages 817-849, November.
    2. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    3. Clinton Gubong Gassi, 2024. "A Characterization of the Myerson value for cooperative games on voting structures," Working Papers 2024-10, CRESE.
    4. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    2. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    3. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    4. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    5. Encarnación Algaba & René Brink & Chris Dietz, 2018. "Network Structures with Hierarchy and Communication," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 265-282, October.
    6. Encarnacion Algaba & Jesus Mario Bilbao & Rene van den Brink & Jorge J. Lopez, 2011. "The Myerson Value and Superfluous Supports in Union Stable Systems," Tinbergen Institute Discussion Papers 11-127/1, Tinbergen Institute.
    7. E. Algaba & J. M. Bilbao & R. Brink & J. J. López, 2012. "The Myerson Value and Superfluous Supports in Union Stable Systems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 650-668, November.
    8. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    9. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    10. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.
    11. Takashi Ui & Hiroyuki Kojima & Atsushi Kajii, 2011. "The Myerson value for complete coalition structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 427-443, December.
    12. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    13. Sylvain Béal & Issofa Moyouwou & Eric Rémila & Phillippe Solal, 2018. "Cooperative games on intersection closed systems and the Shapley value," Working Papers 2018-06, CRESE.
    14. Emilio Calvo & Esther Gutiérrez-López, 2015. "The value in games with restricted cooperation," Discussion Papers in Economic Behaviour 0115, University of Valencia, ERI-CES.
    15. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    16. Bas Dietzenbacher & Peter Borm & Ruud Hendrickx, 2017. "Decomposition of network communication games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 407-423, June.
    17. Algaba, A. & Bilbao, J.M. & van den Brink, J.R. & Jiménez-Losada, A., 2000. "Cooperative Games on Antimatroids," Other publications TiSEM 907b4b44-90f9-4faa-9473-8, Tilburg University, School of Economics and Management.
    18. Algaba, A. & Bilbao, J.M. & van den Brink, J.R. & Jiménez-Losada, A., 2000. "Cooperative Games on Antimatroids," Discussion Paper 2000-124, Tilburg University, Center for Economic Research.
    19. Encarnación Algaba & René Brink & Chris Dietz, 2017. "Power Measures and Solutions for Games Under Precedence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 1008-1022, March.
    20. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crb:wpaper:2018-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauent Kondratuk (email available below). General contact details of provider: https://edirc.repec.org/data/crufcfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.