IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-01477514.html
   My bibliography  Save this paper

Fuzzy Measures and Integrals: Recent Developments

Author

Listed:
  • Michel Grabisch

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper surveys the basic notions and most important results around fuzzy measures and integrals, as proposed independently by Choquet and Sugeno, as well as recent developments. The latter includes bases and transforms on set functions, fuzzy measures on set systems, the notion of horizontal additivity, basic Choquet calculus on the nonnegative real line introduced by Sugeno, the extension of the Choquet integral for nonmeasurable functions, and the notion of universal integral.

Suggested Citation

  • Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01477514, HAL.
  • Handle: RePEc:hal:cesptp:hal-01477514
    DOI: 10.1007/978-3-319-19683-1_8
    Note: View the original document on HAL open archive server: https://hal.science/hal-01477514
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01477514/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/978-3-319-19683-1_8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Honda, Aoi & Grabisch, Michel, 2008. "An axiomatization of entropy of capacities on set systems," European Journal of Operational Research, Elsevier, vol. 190(2), pages 526-538, October.
    2. Yaron Azrieli & Ehud Lehrer, 2007. "Extendable Cooperative Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(6), pages 1069-1078, December.
    3. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2000. "The position value for union stable systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 221-236, November.
    4. Lange, Fabien & Grabisch, Michel, 2009. "Values on regular games under Kirchhoff's laws," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 322-340, November.
    5. Ulrich Faigle & Michel Grabisch, 2011. "A Discrete Choquet Integral for Ordered Systems," Post-Print halshs-00563926, HAL.
    6. Ehud Lehrer, 2009. "A new integral for capacities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(1), pages 157-176, April.
    7. Pedro Miranda & Michel Grabisch, 2004. "p-symmetric bi-capacities," Post-Print halshs-00188173, HAL.
    8. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    9. Ulrich Faigle & Michel Grabisch, 2014. "Linear Transforms, Values and Least Square Approximation for Cooperation Systems," Documents de travail du Centre d'Economie de la Sorbonne 14010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Faigle, U. & Grabisch, M. & Heyne, M., 2010. "Monge extensions of cooperation and communication structures," European Journal of Operational Research, Elsevier, vol. 206(1), pages 104-110, October.
    11. Yaarit Even & Ehud Lehrer, 2014. "Decomposition-integral: unifying Choquet and the concave integrals," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(1), pages 33-58, May.
    12. Pedro Miranda & Michel Grabisch & Pedro Gil, 2002. "p-symmetric fuzzy measures," Post-Print hal-00273960, HAL.
    13. Michel Grabisch, 2003. "The Symmetric Sugeno Integral," Post-Print hal-00272084, HAL.
    14. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    15. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miroslav D. Vujičić & James Kennell & Alastair Morrison & Viachaslau Filimonau & Ivana Štajner Papuga & Uglješa Stankov & Djordjije A. Vasiljević, 2020. "Fuzzy Modelling of Tourist Motivation: An Age-Related Model for Sustainable, Multi-Attraction, Urban Destinations," Sustainability, MDPI, vol. 12(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    2. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    3. Ulrich Faigle & Michel Grabisch & Andres Jiménez-Losada & Manuel Ordóñez, 2014. "Games on concept lattices: Shapley value and core," Documents de travail du Centre d'Economie de la Sorbonne 14070, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    4. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    5. repec:hal:pseose:hal-01111670 is not listed on IDEAS
    6. Marichal, Jean-Luc, 2007. "k-intolerant capacities and Choquet integrals," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1453-1468, March.
    7. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    8. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2011. "A representation of preferences by the Choquet integral with respect to a 2-additive capacity," Theory and Decision, Springer, vol. 71(3), pages 297-324, September.
    9. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    10. repec:hal:pseose:hal-00803233 is not listed on IDEAS
    11. Zhang, Ling & Zhang, Luping & Zhou, Peng & Zhou, Dequn, 2015. "A non-additive multiple criteria analysis method for evaluation of airline service quality," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 154-161.
    12. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    13. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    14. Yasuo Narukawa & Vicenç Torra & Michio Sugeno, 2016. "Choquet integral with respect to a symmetric fuzzy measure of a function on the real line," Annals of Operations Research, Springer, vol. 244(2), pages 571-581, September.
    15. Michel Grabisch & Peter Sudhölter, 2014. "The positive core for games with precedence constraints," Documents de travail du Centre d'Economie de la Sorbonne 14036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Yaarit Even & Ehud Lehrer, 2014. "Decomposition-integral: unifying Choquet and the concave integrals," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(1), pages 33-58, May.
    17. Encarnación Algaba & René Brink & Chris Dietz, 2017. "Power Measures and Solutions for Games Under Precedence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 1008-1022, March.
    18. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    19. Sylvain Béal & Issofa Moyouwou & Eric Rémila & Phillippe Solal, 2018. "Cooperative games on intersection closed systems and the Shapley value," Working Papers 2018-06, CRESE.
    20. Koshevoy, G.A. & Talman, A.J.J., 2011. "Solution Concepts for Games with General Coalitional Structure (Replaces CentER DP 2011-025)," Discussion Paper 2011-119, Tilburg University, Center for Economic Research.
    21. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    22. Emilio Calvo & Esther Gutiérrez-López, 2015. "The value in games with restricted cooperation," Discussion Papers in Economic Behaviour 0115, University of Valencia, ERI-CES.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-01477514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.