IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-00281598.html
   My bibliography  Save this paper

An axiomatization of entropy of capacities on set systems

Author

Listed:
  • Aoi Honda

    (Kyutech - Kyushu Institute of Technology)

  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We present an axiomatization of the entropy of capacities defined on set systems which are not necessarily the whole power set, but satisfy a condition of regularity. This entropy encompasses the definition of Marichal and Roubens for the entropy of capacities. Its axiomatization is in the spirit of the one of Faddeev for the classical Shannon entropy. In addition, we present also an axiomatization of the entropy for capacities proposed by Dukhovny

Suggested Citation

  • Aoi Honda & Michel Grabisch, 2008. "An axiomatization of entropy of capacities on set systems," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00281598, HAL.
  • Handle: RePEc:hal:cesptp:hal-00281598
    DOI: 10.1016/j.ejor.2007.06.033
    Note: View the original document on HAL open archive server: https://hal.science/hal-00281598
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00281598/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ejor.2007.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lange, Fabien & Grabisch, Michel, 2009. "Values on regular games under Kirchhoff's laws," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 322-340, November.
    2. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381119, HAL.
    3. Marichal, Jean-Luc, 2002. "Entropy of discrete Choquet capacities," European Journal of Operational Research, Elsevier, vol. 137(3), pages 612-624, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijue Xie & Michel Grabisch, 2009. "The core of games on k-regular set systems," Post-Print halshs-00423922, HAL.
    2. Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Post-Print hal-01302377, HAL.
    3. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    4. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Post-Print hal-01302377, HAL.
    2. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    3. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    4. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381119, HAL.
    5. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    6. René van den Brink, 2017. "Games with a Permission Structure: a survey on generalizations and applications," Tinbergen Institute Discussion Papers 17-016/II, Tinbergen Institute.
    7. Bingsheng Liu & Meiqing Fu & Shuibo Zhang & Bin Xue & Qi Zhou & Shiruo Zhang, 2018. "An interval-valued 2-tuple linguistic group decision-making model based on the Choquet integral operator," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(2), pages 407-424, January.
    8. Michel Grabisch, 2006. "Capacities and Games on Lattices: A Survey of Result," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00179830, HAL.
    9. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    10. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    11. Jaume Belles-Sampera & Montserrat Guillén & José M. Merigó & Miguel Santolino, 2013. "“Indicators for the characterization of discrete Choquet integrals”," IREA Working Papers 201311, University of Barcelona, Research Institute of Applied Economics, revised May 2013.
    12. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    13. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    14. Aguilera, Néstor E. & Di Marco, Silvia C. & Escalante, Mariana S., 2010. "The Shapley value for arbitrary families of coalitions," European Journal of Operational Research, Elsevier, vol. 204(1), pages 125-138, July.
    15. Mei Cai & Li Yan & Zaiwu Gong & Guo Wei, 2021. "A Voting Mechanism Designed for Talent Shows in Mass Media: Weighted Preference of Group Decision Makers in Social Networks Using Fuzzy Measures and Choquet Integral," Group Decision and Negotiation, Springer, vol. 30(6), pages 1261-1284, December.
    16. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    17. Jian-Zhang Wu & Yi-Ping Zhou & Li Huang & Jun-Jie Dong, 2019. "Multicriteria Correlation Preference Information (MCCPI)-Based Ordinary Capacity Identification Method," Mathematics, MDPI, vol. 7(3), pages 1-13, March.
    18. Jilei Shi & Erfang Shan, 2021. "The Banzhaf value for generalized probabilistic communication situations," Annals of Operations Research, Springer, vol. 301(1), pages 225-244, June.
    19. Baron, Richard & Béal, Sylvain & Remila, Eric & Solal, Philippe, 2008. "Average tree solutions for graph games," MPRA Paper 10189, University Library of Munich, Germany.
    20. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-00281598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.