IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v46y2021i2p428-451.html
   My bibliography  Save this article

Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time

Author

Listed:
  • Yu-Jui Huang

    (Department of Applied Mathematics, University of Colorado, Boulder, Boulder, Colorado 80309)

  • Zhou Zhou

    (School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia)

Abstract

A new definition of continuous-time equilibrium controls is introduced. As opposed to the standard definition, which involves a derivative-type operation, the new definition parallels how a discrete-time equilibrium is defined and allows for unambiguous economic interpretation. The terms “strong equilibria” and “weak equilibria” are coined for controls under the new and standard definitions, respectively. When the state process is a time-homogeneous continuous-time Markov chain, a careful asymptotic analysis gives complete characterizations of weak and strong equilibria. Thanks to the Kakutani–Fan fixed-point theorem, the general existence of weak and strong equilibria is also established under an additional compactness assumption. Our theoretic results are applied to a two-state model under nonexponential discounting. In particular, we demonstrate explicitly that there can be incentive to deviate from a weak equilibrium, which justifies the need for strong equilibria. Our analysis also provides new results for the existence and characterization of discrete-time equilibria under infinite horizon.

Suggested Citation

  • Yu-Jui Huang & Zhou Zhou, 2021. "Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 428-451, May.
  • Handle: RePEc:inm:ormoor:v:46:y:2021:i:2:p:428-451
    DOI: 10.1287/moor.2020.1066
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/moor.2020.1066
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2020.1066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    2. Pirvu, Traian A. & Zhang, Huayue, 2014. "Investment–consumption with regime-switching discount rates," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 142-150.
    3. Yu‐Jui Huang & Adrien Nguyen‐Huu & Xun Yu Zhou, 2020. "General stopping behaviors of naïve and noncommitted sophisticated agents, with application to probability distortion," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 310-340, January.
    4. repec:dau:papers:123456789/11473 is not listed on IDEAS
    5. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    6. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    7. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca De Gennaro Aquino & Sascha Desmettre & Yevhen Havrylenko & Mogens Steffensen, 2024. "Equilibrium control theory for Kihlstrom-Mirman preferences in continuous time," Papers 2407.16525, arXiv.org, revised Oct 2024.
    2. Mariana Khapko, 2023. "Asset pricing with dynamically inconsistent agents," Finance and Stochastics, Springer, vol. 27(4), pages 1017-1046, October.
    3. Pengyu Wei & Wei Wei, 2024. "Irreversible investment under weighted discounting: effects of decreasing impatience," Papers 2409.01478, arXiv.org.
    4. Alain Bensoussan & Guiyuan Ma & Chi Chung Siu & Sheung Chi Phillip Yam, 2022. "Dynamic mean–variance problem with frictions," Finance and Stochastics, Springer, vol. 26(2), pages 267-300, April.
    5. Erhan Bayraktar & Zhenhua Wang & Zhou Zhou, 2023. "Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 797-841, July.
    6. Oumar Mbodji & Traian A. Pirvu, 2023. "Portfolio Time Consistency and Utility Weighted Discount Rates," Papers 2402.05113, arXiv.org.
    7. Yunfei Peng & Wei Wei, 2023. "Solutions to Equilibrium HJB Equations for Time-Inconsistent Deterministic Linear Quadratic Control: Characterization and Uniqueness," Papers 2308.13850, arXiv.org.
    8. Zongxia Liang & Fengyi Yuan, 2023. "Weak equilibria for time‐inconsistent control: With applications to investment‐withdrawal decisions," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 891-945, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    2. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.
    3. Yu-Jui Huang & Zhou Zhou, 2018. "Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time," Papers 1809.09243, arXiv.org, revised Aug 2019.
    4. Yu-Jui Huang & Zhou Zhou, 2017. "Optimal Equilibria for Time-Inconsistent Stopping Problems in Continuous Time," Papers 1712.07806, arXiv.org, revised Oct 2018.
    5. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    6. Oumar Mbodji & Traian A. Pirvu, 2023. "Portfolio Time Consistency and Utility Weighted Discount Rates," Papers 2402.05113, arXiv.org.
    7. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    8. Yu-Jui Huang & Zhou Zhou, 2021. "A Time-Inconsistent Dynkin Game: from Intra-personal to Inter-personal Equilibria," Papers 2101.00343, arXiv.org, revised Dec 2021.
    9. Zongxia Liang & Fengyi Yuan, 2021. "Weak equilibria for time-inconsistent control: with applications to investment-withdrawal decisions," Papers 2105.06607, arXiv.org, revised Jun 2023.
    10. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    11. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    12. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    13. Yu‐Jui Huang & Zhou Zhou, 2020. "Optimal equilibria for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1103-1134, July.
    14. Camilo Hern'andez & Dylan Possamai, 2020. "Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents," Papers 2002.12572, arXiv.org, revised Jul 2021.
    15. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2020. "Consistent Investment of Sophisticated Rank-Dependent Utility Agents in Continuous Time," Working Papers hal-02624308, HAL.
    16. Zhao, Qian & Shen, Yang & Wei, Jiaqin, 2014. "Consumption–investment strategies with non-exponential discounting and logarithmic utility," European Journal of Operational Research, Elsevier, vol. 238(3), pages 824-835.
    17. Felix Fie{ss}inger & Mitja Stadje, 2023. "Time-Consistent Asset Allocation for Risk Measures in a L\'evy Market," Papers 2305.09471, arXiv.org, revised Oct 2024.
    18. Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2021. "Equilibrium concepts for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 508-530, January.
    19. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2020. "Consistent Investment of Sophisticated Rank-Dependent Utility Agents in Continuous Time," Papers 2006.01979, arXiv.org.
    20. Zongxia Liang & Sheng Wang & Jianming Xia & Fengyi Yuan, 2024. "Dynamic portfolio selection under generalized disappointment aversion," Papers 2401.08323, arXiv.org, revised Mar 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:46:y:2021:i:2:p:428-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.