IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v30y2020i3p1103-1134.html
   My bibliography  Save this article

Optimal equilibria for time‐inconsistent stopping problems in continuous time

Author

Listed:
  • Yu‐Jui Huang
  • Zhou Zhou

Abstract

For an infinite‐horizon continuous‐time optimal stopping problem under nonexponential discounting, we look for an optimal equilibrium, which generates larger values than any other equilibrium does on the entire state space. When the discount function is log subadditive and the state process is one‐dimensional, an optimal equilibrium is constructed in a specific form, under appropriate regularity and integrability conditions. Although there may exist other optimal equilibria, we show that they can differ from the constructed one in very limited ways. This leads to a sufficient condition for the uniqueness of optimal equilibria, up to some closedness condition. To illustrate our theoretic results, a comprehensive analysis is carried out for three specific stopping problems, concerning asset liquidation and real options valuation. For each one of them, an optimal equilibrium is characterized through an explicit formula.

Suggested Citation

  • Yu‐Jui Huang & Zhou Zhou, 2020. "Optimal equilibria for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1103-1134, July.
  • Handle: RePEc:bla:mathfi:v:30:y:2020:i:3:p:1103-1134
    DOI: 10.1111/mafi.12229
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12229
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu‐Jui Huang & Adrien Nguyen‐Huu & Xun Yu Zhou, 2020. "General stopping behaviors of naïve and noncommitted sophisticated agents, with application to probability distortion," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 310-340, January.
    2. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    3. Bezalel Peleg & Menahem E. Yaari, 1973. "On the Existence of a Consistent Course of Action when Tastes are Changing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 40(3), pages 391-401.
    4. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    5. George Loewenstein & Drazen Prelec, 1992. "Anomalies in Intertemporal Choice: Evidence and an Interpretation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 573-597.
    6. Thaler, Richard, 1981. "Some empirical evidence on dynamic inconsistency," Economics Letters, Elsevier, vol. 8(3), pages 201-207.
    7. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    8. Loewenstein, George & Thaler, Richard H, 1989. "Intertemporal Choice," Journal of Economic Perspectives, American Economic Association, vol. 3(4), pages 181-193, Fall.
    9. Kocherlakota, Narayana R., 1996. "Reconsideration-Proofness: A Refinement for Infinite Horizon Time Inconsistency," Games and Economic Behavior, Elsevier, vol. 15(1), pages 33-54, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Zhenhua Wang & Zhou Zhou, 2023. "Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 797-841, July.
    2. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    3. Oumar Mbodji & Traian A. Pirvu, 2023. "Portfolio Time Consistency and Utility Weighted Discount Rates," Papers 2402.05113, arXiv.org.
    4. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    5. Shuoqing Deng & Xiang Yu & Jiacheng Zhang, 2023. "On time-consistent equilibrium stopping under aggregation of diverse discount rates," Papers 2302.07470, arXiv.org, revised Dec 2023.
    6. Zongxia Liang & Fengyi Yuan, 2021. "Weak equilibria for time-inconsistent control: with applications to investment-withdrawal decisions," Papers 2105.06607, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Jui Huang & Zhou Zhou, 2017. "Optimal Equilibria for Time-Inconsistent Stopping Problems in Continuous Time," Papers 1712.07806, arXiv.org, revised Oct 2018.
    2. Yu-Jui Huang & Zhou Zhou, 2017. "The Optimal Equilibrium for Time-Inconsistent Stopping Problems -- the Discrete-Time Case," Papers 1707.04981, arXiv.org, revised Dec 2018.
    3. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.
    4. Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2021. "Equilibrium concepts for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 508-530, January.
    5. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    6. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    7. Yu-Jui Huang & Zhou Zhou, 2021. "A Time-Inconsistent Dynkin Game: from Intra-personal to Inter-personal Equilibria," Papers 2101.00343, arXiv.org, revised Dec 2021.
    8. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    9. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    10. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    11. Efe A Ok & Yusufcan Masatlioglu, 2003. "A General Theory of Time Preferences," Levine's Bibliography 234936000000000089, UCLA Department of Economics.
    12. Doruk Cetemen & Felix Zhiyu Feng & Can Urgun, 2019. "Contracting with Non-Exponential Discounting: Moral Hazard and Dynamic Inconsistency," Working Papers 2019-17, Princeton University. Economics Department..
    13. Méder, Zsombor Z. & Flesch, János & Peeters, Ronald, 2017. "Naiveté and sophistication in dynamic inconsistency," Mathematical Social Sciences, Elsevier, vol. 87(C), pages 40-54.
    14. Barry Sopher & Arnav Sheth, 2006. "A Deeper Look at Hyperbolic Discounting," Theory and Decision, Springer, vol. 60(2), pages 219-255, May.
    15. Fernando S. Machado & Rajiv K. Sinha, 2007. "Smoking Cessation: A Model of Planned vs. Actual Behavior for Time-Inconsistent Consumers," Marketing Science, INFORMS, vol. 26(6), pages 834-850, 11-12.
    16. Zhao, Qian & Shen, Yang & Wei, Jiaqin, 2014. "Consumption–investment strategies with non-exponential discounting and logarithmic utility," European Journal of Operational Research, Elsevier, vol. 238(3), pages 824-835.
    17. Ted O'Donoghue & Matthew Rabin, 2001. "Choice and Procrastination," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 121-160.
    18. Yu-Jui Huang & Zhou Zhou, 2018. "Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time," Papers 1809.09243, arXiv.org, revised Aug 2019.
    19. Matthew Rabin & Ted O'Donoghue, 1999. "Doing It Now or Later," American Economic Review, American Economic Association, vol. 89(1), pages 103-124, March.
    20. Zhao, Qian & Wang, Rongming & Wei, Jiaqin, 2016. "Exponential utility maximization for an insurer with time-inconsistent preferences," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 89-104.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:30:y:2020:i:3:p:1103-1134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.