IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00691816.html
   My bibliography  Save this paper

Time-Inconsistent Stochastic Linear--Quadratic Control

Author

Listed:
  • Ying Hu

    (IRMAR - Institut de Recherche Mathématique de Rennes - UR - Université de Rennes - INSA Rennes - Institut National des Sciences Appliquées - Rennes - INSA - Institut National des Sciences Appliquées - ENS Rennes - École normale supérieure - Rennes - UR2 - Université de Rennes 2 - CNRS - Centre National de la Recherche Scientifique - INSTITUT AGRO Agrocampus Ouest - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

  • Hanqing Jin
  • Xun Yu Zhou

Abstract

In this paper, we formulate a general time-inconsistent stochastic linear--quadratic (LQ) control problem. The time-inconsistency arises from the presence of a quadratic term of the expected state as well as a state-dependent term in the objective functional. We define an equilibrium, instead of optimal, solution within the class of open-loop controls, and derive a sufficient condition for equilibrium controls via a flow of forward--backward stochastic differential equations. When the state is one dimensional and the coefficients in the problem are all deterministic, we find an explicit equilibrium control. As an application, we then consider a mean-variance portfolio selection model in a complete financial market where the risk-free rate is a deterministic function of time but all the other market parameters are possibly stochastic processes. Applying the general sufficient condition, we obtain explicit equilibrium strategies when the risk premium is both deterministic and stochastic.

Suggested Citation

  • Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
  • Handle: RePEc:hal:journl:hal-00691816
    DOI: 10.1137/110853960
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00691816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.