IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i4p2349-2383.html
   My bibliography  Save this article

Optimal variance stopping with linear diffusions

Author

Listed:
  • Gad, Kamille Sofie Tågholt
  • Matomäki, Pekka

Abstract

We study the optimal stopping problem of maximizing the variance of an unkilled linear diffusion. Especially, we demonstrate how the problem can be solved as a convex two-player zero-sum game, and reveal quite surprising application of game theory by doing so. Our main result shows that an optimal solution can, in a general case, be found among stopping times that are mixtures of two hitting times. This and other revealed phenomena together with suggested solution methods could be helpful when facing more complex non-linear optimal stopping problems. The results are illustrated by a few examples.

Suggested Citation

  • Gad, Kamille Sofie Tågholt & Matomäki, Pekka, 2020. "Optimal variance stopping with linear diffusions," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2349-2383.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2349-2383
    DOI: 10.1016/j.spa.2019.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919304119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu-Jui Huang & Zhou Zhou, 2017. "Optimal Equilibria for Time-Inconsistent Stopping Problems in Continuous Time," Papers 1712.07806, arXiv.org, revised Oct 2018.
    2. Yu-Jui Huang & Zhou Zhou, 2017. "The Optimal Equilibrium for Time-Inconsistent Stopping Problems -- the Discrete-Time Case," Papers 1707.04981, arXiv.org, revised Dec 2018.
    3. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    4. Touzi, N. & Vieille, N., 1999. "Continuous-Time Dynkin Games with Mixed Strategies," Papiers d'Economie Mathématique et Applications 1999.112, Université Panthéon-Sorbonne (Paris 1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Sören & Lindensjö, Kristoffer, 2020. "On time-inconsistent stopping problems and mixed strategy stopping times," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2886-2917.
    2. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    3. Yu-Jui Huang & Zhou Zhou, 2021. "A Time-Inconsistent Dynkin Game: from Intra-personal to Inter-personal Equilibria," Papers 2101.00343, arXiv.org, revised Dec 2021.
    4. Yu-Jui Huang & Zhou Zhou, 2017. "Optimal Equilibria for Time-Inconsistent Stopping Problems in Continuous Time," Papers 1712.07806, arXiv.org, revised Oct 2018.
    5. Bonatti, Alessandro & Hörner, Johannes, 2017. "Learning to disagree in a game of experimentation," Journal of Economic Theory, Elsevier, vol. 169(C), pages 234-269.
    6. Tiziano De Angelis & Nikita Merkulov & Jan Palczewski, 2020. "On the value of non-Markovian Dynkin games with partial and asymmetric information," Papers 2007.10643, arXiv.org, revised Feb 2021.
    7. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    8. Hamadène, S. & Wang, H., 2009. "BSDEs with two RCLL reflecting obstacles driven by Brownian motion and Poisson measure and a related mixed zero-sum game," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2881-2912, September.
    9. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "Nash equilibria of threshold type for two-player nonzero-sum games of stopping," Center for Mathematical Economics Working Papers 563, Center for Mathematical Economics, Bielefeld University.
    10. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    11. Jan-Henrik Steg, 2015. "Symmetric Equilibria in Stochastic Timing Games," Papers 1507.04797, arXiv.org, revised May 2018.
    12. Yu‐Jui Huang & Adrien Nguyen‐Huu & Xun Yu Zhou, 2020. "General stopping behaviors of naïve and noncommitted sophisticated agents, with application to probability distortion," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 310-340, January.
    13. David Hobson & Gechun Liang & Edward Wang, 2021. "Callable convertible bonds under liquidity constraints and hybrid priorities," Papers 2111.02554, arXiv.org, revised Oct 2024.
    14. Yu‐Jui Huang & Zhou Zhou, 2020. "Optimal equilibria for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1103-1134, July.
    15. Kaufmann, Marc, 2022. "Projection bias in effort choices," Games and Economic Behavior, Elsevier, vol. 135(C), pages 368-393.
    16. Steg, Jan-Henrik, 2018. "Preemptive investment under uncertainty," Games and Economic Behavior, Elsevier, vol. 110(C), pages 90-119.
    17. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.
    18. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    19. Erhan Bayraktar & Song Yao, 2015. "On the Robust Dynkin Game," Papers 1506.09184, arXiv.org, revised Sep 2016.
    20. Oumar Mbodji & Traian A. Pirvu, 2023. "Portfolio Time Consistency and Utility Weighted Discount Rates," Papers 2402.05113, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2349-2383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.