IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-00308473.html
   My bibliography  Save this paper

Caractérisation de crises financières à l'aide de modèles hybrides (HMC-MLP)

Author

Listed:
  • Bertrand Maillet

    (TEAM - Théories et Applications en Microéconomie et Macroéconomie - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Madalina Olteanu

    (MATISSE - UMR 8595 - Modélisation Appliquée, Trajectoires Institutionnelles et Stratégies Socio-Économiques - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, SAMOS - Statistique Appliquée et MOdélisation Stochastique - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Joseph Rynkiewicz

    (MATISSE - UMR 8595 - Modélisation Appliquée, Trajectoires Institutionnelles et Stratégies Socio-Économiques - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, SAMOS - Statistique Appliquée et MOdélisation Stochastique - UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

Les marchés financiers sont souvent le lieu de violentes turbulences des cours et un indice de crise - appelé IMS (Index of Market Shocks, voir Maillet et Michel, 2002) - a été récemment introduit pour tenter de quantifier les turbulences de marchés se produisant à l'occasion de ces crises financières. La volatilité conditionnelle des rentabilités boursières (voir Hamilton, 1994), tout comme les crises bancaires et financières du siècle dernier (Coe, 2002) ont déjà été représentées à l'aide de modèles à changements de régimes. Par ailleurs, la modélisation via des perceptrons multi-couches et chaînes de Markov cachées a été utilisée dans l'étude de phénomène de pics de pollution (voir Rynkiewicz, 2000), partageant a priori quelques similitudes avec les phénomènes de crises observées sur les marchés financiers. L'objet du présent article est de fournir une description modélisée du comportement de l'indicateur IMS, calculé sur le marché français (CAC40 en haute fréquence, 1995-2004), en essayant de caractériser la présence de régimes dans la série. Nous commencons par étudier une série d'IMS à l'aide de modèles auto-régressifs simples, puis à l'aide d'un modèle hybride intégrant des perceptrons multi-couches et des chaînes de Markov cachées.

Suggested Citation

  • Bertrand Maillet & Madalina Olteanu & Joseph Rynkiewicz, 2004. "Caractérisation de crises financières à l'aide de modèles hybrides (HMC-MLP)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308473, HAL.
  • Handle: RePEc:hal:cesptp:hal-00308473
    Note: View the original document on HAL open archive server: https://hal.science/hal-00308473
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00308473/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bertrand Maillet & Thierry Michel, 2003. "An index of market shocks based on multiscale analysis," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 88-97.
    2. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    3. Coe, Patrick J, 2002. "Financial Crisis and the Great Depression: A Regime Switching Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 76-93, February.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertrand Maillet & Madalina Olteanu & Joseph Rynkiewicz, 2004. "Caractérisation de crises financières à l'aide de modèles hybrides (HMC-MLP)," Post-Print hal-00308473, HAL.
    2. PERRON, Benoît, 1999. "Jumps in the Volatility of Financial Markets," Cahiers de recherche 9912, Universite de Montreal, Departement de sciences economiques.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    4. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    5. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. Kuang‐Liang Chang & Chi‐Wei He, 2010. "Does The Magnitude Of The Effect Of Inflation Uncertainty On Output Growth Depend On The Level Of Inflation?," Manchester School, University of Manchester, vol. 78(2), pages 126-148, March.
    7. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    8. Tuysuz, Sukriye, 2007. "The asymmetric impact of macroeconomic announcements on U.S. Government bond rate level and volatility," MPRA Paper 5381, University Library of Munich, Germany.
    9. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    10. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    11. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).
    12. Francq, Christian & Zakoian, Jean-Michel, 2013. "Inference in non stationary asymmetric garch models," MPRA Paper 44901, University Library of Munich, Germany.
    13. Tamal Datta Chaudhuri & Indranil Ghosh, 2016. "Artificial Neural Network and Time Series Modeling Based Approach to Forecasting the Exchange Rate in a Multivariate Framework," Papers 1607.02093, arXiv.org.
    14. Výrost, Tomáš & Baumöhl, Eduard, 2009. "Asymmetric GARCH and the financial crisis: a preliminary study," MPRA Paper 27939, University Library of Munich, Germany.
    15. Christiansen, Charlotte, 2008. "Level-ARCH short rate models with regime switching: Bivariate modeling of US and European short rates," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 925-948, December.
    16. Belke, Ansgar & Gokus, Christian, 2011. "Volatility Patterns of CDS, Bond and Stock Markets Before and During the Financial Crisis – Evidence from Major Financial Institutions," Ruhr Economic Papers 243, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    18. Stergios B. Fotopoulos & Abhishek Kaul & Vasileios Pavlopoulos & Venkata K. Jandhyala, 2024. "Adaptive parametric change point inference under covariance structure changes," Statistical Papers, Springer, vol. 65(5), pages 2887-2913, July.
    19. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    20. Xu, Libo & Serletis, Apostolos, 2016. "Monetary and fiscal policy switching with time-varying volatilities," Economics Letters, Elsevier, vol. 145(C), pages 202-205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-00308473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.