IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v18y2009i1p67-86.html
   My bibliography  Save this article

Regime switching: Italian financial markets over a century

Author

Listed:
  • Margherita Velucchi

Abstract

The frequency of crashes and the magnitude of crises in international financial markets are growing more severe over time. Recent financial crises are not singular events portrayed in recent accounts, rather, they erupt in circumstances that are very similar to the economic and financial environments of the earlier eras. This paper analyzes the Italian stock market in two very peculiar periods (1901-1911 and 1993-2004): the “Second” and the “Third Industrial Revolution”. We use Markov Switching Models to test whether the Italian stock market volatility has increased in the long run and if it can be represented by different volatility regimes. We find that volatility regimes exist; that Banking sector has a central role and “New Economy” sectors perform quite well while traditional sectors do not, in both periods.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Margherita Velucchi, 2009. "Regime switching: Italian financial markets over a century," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 67-86, March.
  • Handle: RePEc:spr:stmapp:v:18:y:2009:i:1:p:67-86
    DOI: 10.1007/s10260-007-0075-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-007-0075-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-007-0075-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Terence C. Mills & Ping Wang, 2003. "Multivariate Markov Switching Common Factor Models for the UK," Bulletin of Economic Research, Wiley Blackwell, vol. 55(2), pages 177-193, April.
    2. Jeanne, Olivier & Masson, Paul, 2000. "Currency crises, sunspots and Markov-switching regimes," Journal of International Economics, Elsevier, vol. 50(2), pages 327-350, April.
    3. Simon van Norden & Huntley Schaller & ), 1995. "Regime Switching in Stock Market Returns," Econometrics 9502002, University Library of Munich, Germany.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Michael D. Bordo & Antu P. Murshid, 2000. "Are Financial Crises Becoming Increasingly More Contagious? What is the Historical Evidence on Contagion?," NBER Working Papers 7900, National Bureau of Economic Research, Inc.
    7. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    10. Michael Bordo & Barry Eichengreen & Daniela Klingebiel & Maria Soledad Martinez-Peria, 2001. "Is the crisis problem growing more severe?," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 16(32), pages 52-82.
    11. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    12. Billio, Monica & Pelizzon, Loriana, 2000. "Value-at-Risk: a multivariate switching regime approach," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 531-554, December.
    13. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    15. Giampiero M. Gallo & Edoardo Otranto, 2007. "Volatility transmission across markets: a Multichain Markov Switching model," Applied Financial Economics, Taylor & Francis Journals, vol. 17(8), pages 659-670.
    16. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    17. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    2. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    3. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    4. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
    5. Aloui, Chaker & Jammazi, Rania, 2009. "The effects of crude oil shocks on stock market shifts behaviour: A regime switching approach," Energy Economics, Elsevier, vol. 31(5), pages 789-799, September.
    6. Daouk, Hazem & Guo, Jie Qun, 2003. "Switching Asymmetric GARCH and Options on a Volatility Index," Working Papers 127187, Cornell University, Department of Applied Economics and Management.
    7. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Choi, Kyongwook & Hammoudeh, Shawkat, 2010. "Volatility behavior of oil, industrial commodity and stock markets in a regime-switching environment," Energy Policy, Elsevier, vol. 38(8), pages 4388-4399, August.
    9. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2019. "A Test of Using Markov-Switching GARCH Models in Oil and Natural Gas Trading," Energies, MDPI, vol. 13(1), pages 1-24, December.
    10. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
    11. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    12. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    13. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    14. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Advances in Econometrics, in: Missing Data Methods: Time-Series Methods and Applications, pages 1-86, Emerald Group Publishing Limited.
    15. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    16. Abounoori, Esmaiel & Elmi, Zahra (Mila) & Nademi, Younes, 2016. "Forecasting Tehran stock exchange volatility; Markov switching GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 264-282.
    17. Chang, Kuang-Liang, 2016. "Does the return-state-varying relationship between risk and return matter in modeling the time series process of stock return?," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 72-87.
    18. Ryan Lemand, 2003. "Should Stock Market Indexes Time Varying Correlations Be Taken Into Account? A Conditional Variance Multivariate Approach," Econometrics 0307004, University Library of Munich, Germany, revised 07 Dec 2020.
    19. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    20. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela Ben, 2015. "Price discovery and regime shift behavior in the relationship between sharia stocks and sukuk: A two-state Markov switching analysis," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 121-135.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:18:y:2009:i:1:p:67-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.