IDEAS home Printed from https://ideas.repec.org/a/kea/keappr/ker-20101231-26-2-08.html
   My bibliography  Save this article

Sudden Changes and Persistence in Volatility of Korean Equity Sector Returns

Author

Listed:
  • Sang Hoon Kang

    (Pusan National University)

  • Seong-Min Yoon

    (Pusan National University)

Abstract

This study examines the impact of exogenous changes in volatility persistence using the GARCH model with and without shock dummies. For this purpose, we considered five weekly KOSPI 200 sector index series. Using the iterated cumulated sums of squares (ICSS) algorithm, we determined the timing of volatility changes corresponding to major economic and political events, including the 1997 Asian currency crisis, the Russia crisis of 1998, the IT bubble of 2000, the 9/11 terror attack of 2001, the Iraq war of 2003 and the global financial crisis that has been recently affecting nations worldwide. After incorporating these volatility change, volatility persistence in the GARCH model was significantly reduced. This result implies that ignoring exogenous changes overestimates volatility persistence. Thus, incorporating information on exogenous changes in conditional variance will improve the accuracy of volatility forecasting.

Suggested Citation

  • Sang Hoon Kang & Seong-Min Yoon, 2010. "Sudden Changes and Persistence in Volatility of Korean Equity Sector Returns," Korean Economic Review, Korean Economic Association, vol. 26, pages 431-451.
  • Handle: RePEc:kea:keappr:ker-20101231-26-2-08
    as

    Download full text from publisher

    File URL: http://keapaper.kea.ne.kr/RePEc/kea/keappr/KER-20101231-26-2-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farooq Malik & Bradley Ewing & James Payne, 2005. "Measuring volatility persistence in the presence of sudden changes in the variance of Canadian stock returns," Canadian Journal of Economics, Canadian Economics Association, vol. 38(3), pages 1037-1056, August.
    2. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-542, May.
    3. Koichi Maekawa & Sangyeol & Lee, 2004. "The Cusum Test for Parameter Change in Regression with ARCH Errors," Econometric Society 2004 Far Eastern Meetings 606, Econometric Society.
    4. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    5. Farooq Malik & Syed Hassan, 2004. "Modeling volatility in sector index returns with GARCH models using an iterated algorithm," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 28(2), pages 211-225, June.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
    8. Lastrapes, William D, 1989. "Exchange Rate Volatility and U.S. Monetary Policy: An ARCH Application," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 21(1), pages 66-77, February.
    9. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    10. Wang, Ping & Moore, Tomoe, 2009. "Sudden changes in volatility: The case of five central European stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 33-46, February.
    11. Stavros Degiannakis, 2004. "Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
    12. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    13. Hammoudeh, Shawkat & Li, Huimin, 2008. "Sudden changes in volatility in emerging markets: The case of Gulf Arab stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 47-63.
    14. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    15. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
    2. Efe Çağlar Çağli & Pinar Evrim Mandaci & Pinar Hakan Kahyaoğlu, 2011. "Volatility Shifts and Persistence in Variance: Evidence from the Sector Indices of Istanbul Stock Exchange," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 4(3), pages 119-140, December.
    3. Kang, Sang Hoon & Cho, Hwan-Gue & Yoon, Seong-Min, 2009. "Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3543-3550.
    4. Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
    5. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2011. "Structural changes and volatility transmission in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4317-4324.
    6. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    7. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
    9. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    10. Elyasiani, Elyas & Mansur, Iqbal, 1998. "Sensitivity of the bank stock returns distribution to changes in the level and volatility of interest rate: A GARCH-M model," Journal of Banking & Finance, Elsevier, vol. 22(5), pages 535-563, May.
    11. Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Support vector regression based GARCH model with application to forecasting volatility of financial returns," SFB 649 Discussion Papers 2008-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    13. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    14. Neifar, Malika, 2020. "Stock Market Volatility Analysis: A Case Study of TUNindex," MPRA Paper 99140, University Library of Munich, Germany.
    15. Farooq Malik & Bradley T. Ewing & James E. Payne, 2005. "Measuring volatility persistence in the presence of sudden changes in the variance of Canadian stock returns," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(3), pages 1037-1056, August.
    16. repec:awi:wpaper:0472 is not listed on IDEAS
    17. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    18. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    19. Malik, Farooq, 2003. "Sudden changes in variance and volatility persistence in foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 13(3), pages 217-230, July.
    20. Yanlin Shi & Yang Yang, 2018. "Modeling High Frequency Data with Long Memory and Structural Change: A-HYEGARCH Model," Risks, MDPI, vol. 6(2), pages 1-28, March.
    21. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.

    More about this item

    Keywords

    Volatility Forecasting; Regime Shift; Structural Change; ICSS Algorithm;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kea:keappr:ker-20101231-26-2-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: KEA (email available below). General contact details of provider: https://edirc.repec.org/data/keaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.