IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/88162.html
   My bibliography  Save this paper

Modeling within-household associations in household panel studies

Author

Listed:
  • Steele, Fiona
  • Clarke, Paul
  • Kuha, Jouni

Abstract

Household panel data provide valuable information about the extent of similarity in coresidents' attitudes and behaviours. However, existing analysis approaches do not allow for the complex association structures that arise due to changes in household composition over time. We propose a flexible marginal modeling approach where the changing correlation structure between individuals is modeled directly and the parameters estimated using second-order generalized estimating equations (GEE2). A key component of our correlation model specification is the 'superhousehold', a form of social network in which pairs of observations from different individuals are connected (directly or indirectly) by coresidence. These superhouseholds partition observations into clusters with nonstandard and highly variable correlation structures. We thus conduct a simulation study to evaluate the accuracy and stability of GEE2 for these models. Our approach is then applied in an analysis of individuals' attitudes towards gender roles using British Household Panel Survey data. We find strong evidence of between-individual correlation before, during and after coresidence, with large differences among spouses, parent-child, other family, and unrelated pairs. Our results suggest that these dependencies are due to a combination of non-random sorting and causal effects of coresidence.

Suggested Citation

  • Steele, Fiona & Clarke, Paul & Kuha, Jouni, 2019. "Modeling within-household associations in household panel studies," LSE Research Online Documents on Economics 88162, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:88162
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/88162/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuk, Anthony Y. C. & Nott, David J., 2000. "A pairwise likelihood approach to analyzing correlated binary data," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 329-335, May.
    2. Davillas, Apostolos & Pudney, Stephen, 2017. "Concordance of health states in couples: Analysis of self-reported, nurse administered and blood-based biomarker data in the UK Understanding Society panel," Journal of Health Economics, Elsevier, vol. 56(C), pages 87-102.
    3. Harvey Goldstein & Jon Rasbash & William Browne & Geoffrey Woodhouse & Michel Poulain, 2000. "Multilevel Models in the Study of Dynamic Household Structures," European Journal of Population, Springer;European Association for Population Studies, vol. 16(4), pages 373-387, December.
    4. Gneiting T., 2002. "Nonseparable, Stationary Covariance Functions for Space-Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 590-600, June.
    5. Beatrix Jones & Mike West, 2005. "Covariance decomposition in undirected Gaussian graphical models," Biometrika, Biometrika Trust, vol. 92(4), pages 779-786, December.
    6. George Leckie & Harvey Goldstein, 2009. "The limitations of using school league tables to inform school choice," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 835-851, October.
    7. Anthony Y. C. Kuk, 2007. "A Hybrid Pairwise Likelihood Method," Biometrika, Biometrika Trust, vol. 94(4), pages 939-952.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Honglin & Li, Yutao & Fu, Chenyi & Xue, Feng & Zhao, Qiyue & Zheng, Xingyu & Jiang, Kunkun & Liu, Tianbiao, 2024. "Using complex networks and multiple artificial intelligence algorithms for table tennis match action recognition and technical-tactical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Steele, Fiona & Zhang, Siliang & Grundy, Emily & Burchardt, Tania, 2024. "Longitudinal analysis of exchanges of support between parents and children in the UK," LSE Research Online Documents on Economics 119908, London School of Economics and Political Science, LSE Library.
    3. Davillas, Apostolos & Pudney, Stephen, 2017. "Concordance of health states in couples: Analysis of self-reported, nurse administered and blood-based biomarker data in the UK Understanding Society panel," Journal of Health Economics, Elsevier, vol. 56(C), pages 87-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    2. Liu, Li & Xiang, Liming, 2019. "Missing covariate data in generalized linear mixed models with distribution-free random effects," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 1-16.
    3. Li Liu & Liming Xiang, 2014. "Semiparametric estimation in generalized linear mixed models with auxiliary covariates: A pairwise likelihood approach," Biometrics, The International Biometric Society, vol. 70(4), pages 910-919, December.
    4. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    5. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    6. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    7. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    8. Arpino, Bruno & Varriale, Roberta, 2009. "Assessing the quality of institutions’ rankings obtained through multilevel linear regression models," MPRA Paper 19873, University Library of Munich, Germany.
    9. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    10. Arni, Patrick & Dragone, Davide & Goette, Lorenz & Ziebarth, Nicolas R., 2021. "Biased health perceptions and risky health behaviors—Theory and evidence," Journal of Health Economics, Elsevier, vol. 76(C).
    11. Claudia Herresthal, 2015. "Inferring School Quality from Rankings: The Impact of School Choice," Economics Series Working Papers 747, University of Oxford, Department of Economics.
    12. Yasumasa Matsuda, 2014. "Wavelet Analysis Of Spatio-Temporal Data," TERG Discussion Papers 311, Graduate School of Economics and Management, Tohoku University.
    13. Davillas, Apostolos & Pudney, Stephen, 2020. "Biomarkers, disability and health care demand," Economics & Human Biology, Elsevier, vol. 39(C).
    14. Sulis, Isabella & Giambona, Francesca & Porcu, Mariano, 2020. "Adjusted indicators of quality and equity for monitoring the education systems over time. Insights on EU15 countries from PISA surveys," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    15. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    16. Isabella Sulis & Mariano Porcu, 2012. "Comparing degree programs from students’ assessments: A LCRA-based adjusted composite indicator," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 193-209, June.
    17. Davillas, Apostolos & Pudney, Stephen, 2020. "Using biomarkers to predict healthcare costs: Evidence from a UK household panel," Journal of Health Economics, Elsevier, vol. 73(C).
    18. Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
    19. Davillas, Apostolos & M. Jones, Andrew & Sinha, Kompal & Sharma, Anurag, 2018. "Distributional analysis of the role of breadth and persistence of multiple deprivation in the health gradient measured by biomarkers," ISER Working Paper Series 2018-14, Institute for Social and Economic Research.
    20. Zhao, Yuejun, 2023. "Job displacement and the mental health of households: Burden sharing counteracts spillover," Labour Economics, Elsevier, vol. 81(C).

    More about this item

    Keywords

    household effects; household correlation; longitudinal house-holds; homophily; multiple membership multilevel model; marginal model; generalised estimating equations; Internal OA fund;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:88162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.