IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i4p779-786.html
   My bibliography  Save this article

Covariance decomposition in undirected Gaussian graphical models

Author

Listed:
  • Beatrix Jones
  • Mike West

Abstract

The covariance between two variables in a multivariate Gaussian distribution is decomposed into a sum of path weights for all paths connecting the two variables in an undirected independence graph. These weights are useful in determining which variables are important in mediating correlation between the two path endpoints. The decomposition arises in undirected Gaussian graphical models and does not require or involve any assumptions of causality. This covariance decomposition is derived using basic linear algebra. The decomposition is feasible for very large numbers of variables if the corresponding precision matrix is sparse, a circumstance that arises in examples such as gene expression studies in functional genomics. Additional computational efficiences are possible when the undirected graph is derived from an acyclic directed graph. Copyright 2005, Oxford University Press.

Suggested Citation

  • Beatrix Jones & Mike West, 2005. "Covariance decomposition in undirected Gaussian graphical models," Biometrika, Biometrika Trust, vol. 92(4), pages 779-786, December.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:4:p:779-786
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.4.779
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pratik Misra & Seth Sullivant, 2021. "Gaussian graphical models with toric vanishing ideals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 757-785, August.
    2. Alberto Roverato, 2021. "On the interpretation of inflated correlation path weights in concentration graphs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1485-1505, December.
    3. Bianchi, Daniele & Billio, Monica & Casarin, Roberto & Guidolin, Massimo, 2019. "Modeling systemic risk with Markov Switching Graphical SUR models," Journal of Econometrics, Elsevier, vol. 210(1), pages 58-74.
    4. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.
    5. Alberto Roverato & Robert Castelo, 2017. "The networked partial correlation and its application to the analysis of genetic interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 647-665, April.
    6. Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.
    7. Mike West, 2020. "Bayesian forecasting of multivariate time series: scalability, structure uncertainty and decisions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 1-31, February.
    8. Chiranjit Mukherjee & Prasad Kasibhatla & Mike West, 2014. "Spatially varying SAR models and Bayesian inference for high-resolution lattice data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 473-494, June.
    9. Feher Kristen & Whelan James & Müller Samuel, 2011. "Assessing Modularity Using a Random Matrix Theory Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-34, September.
    10. Steele, Fiona & Clarke, Paul & Kuha, Jouni, 2019. "Modeling within-household associations in household panel studies," LSE Research Online Documents on Economics 88162, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:4:p:779-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.