IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v92y2008i1p1-28.html
   My bibliography  Save this article

On composite marginal likelihoods

Author

Listed:
  • Cristiano Varin

Abstract

No abstract is available for this item.

Suggested Citation

  • Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
  • Handle: RePEc:spr:alstar:v:92:y:2008:i:1:p:1-28
    DOI: 10.1007/s10182-008-0060-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-008-0060-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10182-008-0060-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard E. Chandler & Steven Bate, 2007. "Inference for clustered data using the independence loglikelihood," Biometrika, Biometrika Trust, vol. 94(1), pages 167-183.
    2. Anthony Y. C. Kuk, 2007. "A Hybrid Pairwise Likelihood Method," Biometrika, Biometrika Trust, vol. 94(4), pages 939-952.
    3. Robin Henderson, 2003. "A serially correlated gamma frailty model for longitudinal count data," Biometrika, Biometrika Trust, vol. 90(2), pages 355-366, June.
    4. Kuk, Anthony Y. C. & Nott, David J., 2000. "A pairwise likelihood approach to analyzing correlated binary data," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 329-335, May.
    5. Wai-Yin Poon & Sik-Yum Lee, 1987. "Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 409-430, September.
    6. Samuel D. Oman & Victoria Landsman & Yohay Carmel & Ronen Kadmon, 2007. "Analyzing Spatially Distributed Binary Data Using Independent-Block Estimating Equations," Biometrics, The International Biometric Society, vol. 63(3), pages 892-900, September.
    7. Paul Fearnhead & Peter Donnelly, 2002. "Approximate likelihood methods for estimating local recombination rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 657-680, October.
    8. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    9. S. le Cessie & J. C. van Houwelingen, 1994. "Logistic Regression for Correlated Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 95-108, March.
    10. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
    11. Hao Zhang, 2002. "On Estimation and Prediction for Spatial Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(1), pages 129-136, March.
    12. Anthony Y. C. Kuk, 2004. "Permutation invariance of alternating logistic regression for multivariate binary data," Biometrika, Biometrika Trust, vol. 91(3), pages 758-761, September.
    13. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    14. Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
    15. G. Molenberghs & H. Geys, 2001. "Multivariate Clustered Data Analysis in Developmental Toxicity Studies," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(3), pages 319-345, November.
    16. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    17. Germáan Rodríguez & Noreen Goldman, 1995. "An Assessment of Estimation Procedures for Multilevel Models with Binary Responses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(1), pages 73-89, January.
    18. Steffen Fieuws & Geert Verbeke & Filip Boen & Christophe Delecluse, 2006. "High dimensional multivariate mixed models for binary questionnaire data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(4), pages 449-460, August.
    19. C. A. Glasbey, 2001. "Non‐linear autoregressive time series with multivariate Gaussian mixtures as marginal distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 143-154.
    20. Yongtao Guan, 2007. "A Composite Likelihood Cross‐validation Approach in Selecting Bandwidth for the Estimation of the Pair Correlation Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 336-346, June.
    21. Guan, Yongtao, 2006. "A Composite Likelihood Approach in Fitting Spatial Point Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1502-1512, December.
    22. John J. Hanfelt, 2004. "Composite conditional likelihood for sparse clustered data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 259-273, February.
    23. Varin, Cristiano & Vidoni, Paolo, 2006. "Pairwise likelihood inference for ordinal categorical time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2365-2373, December.
    24. Marc Aerts & Gerda Claeskens, 1999. "Bootstrapping Pseudolikelihood Models for Clustered Binary Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(3), pages 515-530, September.
    25. E. T. Parner, 2001. "A Composite Likelihood Approach to Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 295-302, June.
    26. Nils Lid Hjort & Cristiano Varin, 2008. "ML, PL, QL in Markov Chain Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(1), pages 64-82, March.
    27. Ole F. Christensen & Rasmus Waagepetersen, 2002. "Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(2), pages 280-286, June.
    28. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    29. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    30. Kung‐Yee Liang & Jing Qin, 2000. "Regression analysis under non‐standard situations: a pairwise pseudolikelihood approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 773-786.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    2. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    3. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    4. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    5. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    6. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    7. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    8. Li Liu & Liming Xiang, 2014. "Semiparametric estimation in generalized linear mixed models with auxiliary covariates: A pairwise likelihood approach," Biometrics, The International Biometric Society, vol. 70(4), pages 910-919, December.
    9. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    10. Paleti, Rajesh & Bhat, Chandra R., 2013. "The composite marginal likelihood (CML) estimation of panel ordered-response models," Journal of choice modelling, Elsevier, vol. 7(C), pages 24-43.
    11. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    12. Hung‐pin Lai & Subal C. Kumbhakar, 2020. "Estimation of a dynamic stochastic frontier model using likelihood‐based approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 217-247, March.
    13. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    14. Deng Ling & Moore Dirk F., 2009. "Composite Likelihood Modeling of Neighboring Site Correlations of DNA Sequence Substitution Rates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, January.
    15. Feddag, M.-L. & Bacci, S., 2009. "Pairwise likelihood for the longitudinal mixed Rasch model," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1027-1037, February.
    16. Kenne Pagui, E.C. & Salvan, A. & Sartori, N., 2015. "On full efficiency of the maximum composite likelihood estimator," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 120-124.
    17. Bartolucci, Francesco & Lupparelli, Monia, 2012. "Nested hidden Markov chains for modeling dynamic unobserved heterogeneity in multilevel longitudinal data," MPRA Paper 40588, University Library of Munich, Germany.
    18. Büscher, Sebastian & Bauer, Dietmar, 2024. "Weighting strategies for pairwise composite marginal likelihood estimation in case of unbalanced panels and unaccounted autoregressive structure of the errors," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    19. Ipek Sener & Chandra Bhat, 2012. "Flexible spatial dependence structures for unordered multinomial choice models: formulation and application to teenagers’ activity participation," Transportation, Springer, vol. 39(3), pages 657-683, May.
    20. Chong-Zhi Di & Karen Bandeen-Roche, 2011. "Multilevel Latent Class Models with Dirichlet Mixing Distribution," Biometrics, The International Biometric Society, vol. 67(1), pages 86-96, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:92:y:2008:i:1:p:1-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.