IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v100y2016i2d10.1007_s10182-015-0263-7.html
   My bibliography  Save this article

Pairwise likelihood estimation for the normal ogive model with binary data

Author

Listed:
  • M.-L. Feddag

    (Université de Nantes)

Abstract

A marginal pairwise likelihood estimation approach is examined in the normal ogive model with binary response. This method, belonging to the broad class of composite likelihood, provides estimators with desirable asymptotic properties such as consistency and asymptotic normality. We study the performance of the proposed methodology by a simulation and we compare it with marginal maximum likelihood. The different results are also illustrated with an analysis of a real data set from a quality of life study.

Suggested Citation

  • M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
  • Handle: RePEc:spr:alstar:v:100:y:2016:i:2:d:10.1007_s10182-015-0263-7
    DOI: 10.1007/s10182-015-0263-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-015-0263-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-015-0263-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Rigdon & Robert Tsutakawa, 1983. "Parameter estimation in latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 567-574, December.
    2. George Ferguson, 1942. "Item selection by the constant process," Psychometrika, Springer;The Psychometric Society, vol. 7(1), pages 19-29, March.
    3. M. Richardson, 1936. "The relation between the difficulty and the differential validity of a test," Psychometrika, Springer;The Psychometric Society, vol. 1(2), pages 33-49, June.
    4. Kuk, Anthony Y. C. & Nott, David J., 2000. "A pairwise likelihood approach to analyzing correlated binary data," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 329-335, May.
    5. S. le Cessie & J. C. van Houwelingen, 1994. "Logistic Regression for Correlated Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 95-108, March.
    6. D. Finney, 1944. "The application of probit analysis to the results of mental tests," Psychometrika, Springer;The Psychometric Society, vol. 9(1), pages 31-39, March.
    7. Feddag, M.-L. & Bacci, S., 2009. "Pairwise likelihood for the longitudinal mixed Rasch model," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1027-1037, February.
    8. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    9. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    2. Feddag, M.-L. & Bacci, S., 2009. "Pairwise likelihood for the longitudinal mixed Rasch model," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1027-1037, February.
    3. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    4. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    5. Paleti, Rajesh & Bhat, Chandra R., 2013. "The composite marginal likelihood (CML) estimation of panel ordered-response models," Journal of choice modelling, Elsevier, vol. 7(C), pages 24-43.
    6. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    7. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    8. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    9. Chong-Zhi Di & Karen Bandeen-Roche, 2011. "Multilevel Latent Class Models with Dirichlet Mixing Distribution," Biometrics, The International Biometric Society, vol. 67(1), pages 86-96, March.
    10. T.-F. Lo & P.-H. Ke & W.-J. Tsay, 2018. "Pairwise likelihood inference for the random effects probit model," Computational Statistics, Springer, vol. 33(2), pages 837-861, June.
    11. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    12. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    13. Lawrence W. C. Lai & Winky K. O. Ho, 2001. "A Probit Analysis of Development Control: A Hong Kong Case Study of Residential Zones," Urban Studies, Urban Studies Journal Limited, vol. 38(13), pages 2425-2437, December.
    14. Hung‐pin Lai & Subal C. Kumbhakar, 2020. "Estimation of a dynamic stochastic frontier model using likelihood‐based approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 217-247, March.
    15. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    16. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    17. Li Liu & Liming Xiang, 2014. "Semiparametric estimation in generalized linear mixed models with auxiliary covariates: A pairwise likelihood approach," Biometrics, The International Biometric Society, vol. 70(4), pages 910-919, December.
    18. Wu, Billy & Yao, Qiwei & Zhu, Shiwu, 2013. "Estimation in the presence of many nuisance parameters: Composite likelihood and plug-in likelihood," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2877-2898.
    19. Yang Wu & Malay Ghosh, 2017. "Asymptotic Expansion of the Posterior Based on Pairwise Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 39-75, February.
    20. Wu, Billy & Yao, Qiwei & Zhu, Shiwu, 2013. "Estimation in the presence of many nuisance parameters: composite likelihood and plug-in likelihood," LSE Research Online Documents on Economics 50043, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:100:y:2016:i:2:d:10.1007_s10182-015-0263-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.