IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1740.html
   My bibliography  Save this paper

Nonparametric Tests of Conditional Treatment Effects

Author

Listed:
  • Sokbae Lee

    (University College London)

  • Yoon-Jae Whang

    (Seoul National University)

Abstract

We develop a general class of nonparametric tests for treatment effects conditional on covariates. We consider a wide spectrum of null and alternative hypotheses regarding conditional treatment effects, including (i) the null hypothesis of the conditional stochastic dominance between treatment and control groups; (ii) the null hypothesis that the conditional average treatment effect is positive for each value of covariates; and (iii) the null hypothesis of no distributional (or average) treatment effect conditional on covariates against a one-sided (or two-sided) alternative hypothesis. The test statistics are based on L_{1}-type functionals of uniformly consistent nonparametric kernel estimators of conditional expectations that characterize the null hypotheses. Using the Poissionization technique of Gine et al. (2003), we show that suitably studentized versions of our test statistics are asymptotically standard normal under the null hypotheses and also show that the proposed nonparametric tests are consistent against general fixed alternatives. Furthermore, it turns out that our tests have non-negligible powers against some local alternatives that are n^{-1/2} different from the null hypotheses, where n is the sample size. We provide a more powerful test for the case when the null hypothesis may be binding only on a strict subset of the support and also consider an extension to testing for quantile treatment effects. We illustrate the usefulness of our tests by applying them to data from a randomized, job training program (LaLonde (1986)) and by carrying out Monte Carlo experiments based on this dataset.

Suggested Citation

  • Sokbae Lee & Yoon-Jae Whang, 2009. "Nonparametric Tests of Conditional Treatment Effects," Cowles Foundation Discussion Papers 1740, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1740
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d17/d1740.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2006. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," American Economic Review, American Economic Association, vol. 96(4), pages 988-1012, September.
    2. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    3. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    4. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    5. Russell Davidson & Jean-Yves Duclos, 1997. "Statistical Inference for the Measurement of the Incidence of Taxes and Transfers," Econometrica, Econometric Society, vol. 65(6), pages 1453-1466, November.
    6. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    7. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    8. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    9. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    10. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    11. Gordon Anderson & Oliver Linton & Yoon-Jae Wang, 2009. "Non Parametric Estimation of a Polarization Measure," Working Papers tecipa-363, University of Toronto, Department of Economics.
    12. Lavergne, Pascal, 2001. "An equality test across nonparametric regressions," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 307-344, July.
    13. Joshua D. Angrist & Guido M. Kuersteiner, 2011. "Causal Effects of Monetary Shocks: Semiparametric Conditional Independence Tests with a Multinomial Propensity Score," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 725-747, August.
    14. Glenn W. Harrison & John A. List, 2004. "Field Experiments," Journal of Economic Literature, American Economic Association, vol. 42(4), pages 1009-1055, December.
    15. Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008. "Using Randomization in Development Economics Research: A Toolkit," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962, Elsevier.
    16. Jeffrey R Kling & Jeffrey B Liebman & Lawrence F Katz, 2007. "Experimental Analysis of Neighborhood Effects," Econometrica, Econometric Society, vol. 75(1), pages 83-119, January.
    17. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    18. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    19. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    20. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    21. Abbring, Jaap H. & Heckman, James J., 2007. "Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 72, Elsevier.
    22. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    23. Stefan Hoderlein & Enno Mammen, 2009. "Identification and estimation of local average derivatives in non-separable models without monotonicity," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 1-25, March.
    24. Emmanuel Guerre & Isabelle Perrigne & Quang Vuong, 2009. "Nonparametric Identification of Risk Aversion in First-Price Auctions Under Exclusion Restrictions," Econometrica, Econometric Society, vol. 77(4), pages 1193-1227, July.
    25. Edward Miguel & Michael Kremer, 2004. "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities," Econometrica, Econometric Society, vol. 72(1), pages 159-217, January.
    26. Bitler, Marianne P. & Gelbach, Jonah B. & Hoynes, Hilary W., 2008. "Distributional impacts of the Self-Sufficiency Project," Journal of Public Economics, Elsevier, vol. 92(3-4), pages 748-765, April.
    27. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    28. Gao, Jiti & Gijbels, Irène, 2008. "Bandwidth Selection in Nonparametric Kernel Testing," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1584-1594.
    29. Raghabendra Chattopadhyay & Esther Duflo, 2004. "Women as Policy Makers: Evidence from a Randomized Policy Experiment in India," Econometrica, Econometric Society, vol. 72(5), pages 1409-1443, September.
    30. Kaur, Amarjot & Prakasa Rao, B.L.S. & Singh, Harshinder, 1994. "Testing for Second-Order Stochastic Dominance of Two Distributions," Econometric Theory, Cambridge University Press, vol. 10(5), pages 849-866, December.
    31. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    32. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    33. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    34. Su, Liangjun & White, Halbert, 2008. "A Nonparametric Hellinger Metric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 24(4), pages 829-864, August.
    35. David Card & Dean R. Hyslop, 2005. "Estimating the Effects of a Time-Limited Earnings Subsidy for Welfare-Leavers," Econometrica, Econometric Society, vol. 73(6), pages 1723-1770, November.
    36. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    37. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    38. Kyungchul Song, 2007. "Testing Conditional Independence via Rosenblatt Transforms," PIER Working Paper Archive 07-026, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    39. Myoung‐jae Lee, 2009. "Non‐parametric tests for distributional treatment effect for randomly censored responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 243-264, January.
    40. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    41. Horvath, Lajos & Kokoszka, Piotr & Zitikis, Ricardas, 2006. "Testing for stochastic dominance using the weighted McFadden-type statistic," Journal of Econometrics, Elsevier, vol. 133(1), pages 191-205, July.
    42. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    43. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    44. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    45. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    46. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    47. Joshua D. Angrist & Guido M. Kuersteiner, 2004. "Semiparametric Causality Tests Using the Policy Propensity Score," NBER Working Papers 10975, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2013. "Testing functional inequalities," Journal of Econometrics, Elsevier, vol. 172(1), pages 14-32.
    2. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    3. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    4. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    5. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    6. Chen, Le-Yu & Szroeter, Jerzy, 2014. "Testing multiple inequality hypotheses: A smoothed indicator approach," Journal of Econometrics, Elsevier, vol. 178(P3), pages 678-693.
    7. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    8. Advani, Arun & Sloczynski, Tymon, 2013. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 7874, Institute of Labor Economics (IZA).
    9. Sung Jae Jun & Yoonseok Lee & Youngki Shin, 2016. "Treatment Effects With Unobserved Heterogeneity: A Set Identification Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 302-311, April.
    10. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    11. Martin Huber & Michael Lechner & Andreas Steinmayr, 2015. "Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour," Empirical Economics, Springer, vol. 49(1), pages 1-31, August.
    12. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    13. Fan, Yanqin & Park, Sang Soo, 2014. "Nonparametric inference for counterfactual means: Bias-correction, confidence sets, and weak IV," Journal of Econometrics, Elsevier, vol. 178(P1), pages 45-56.
    14. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    15. Masahiro Kato, 2024. "Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects," Papers 2403.03240, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    3. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    4. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    5. Słoczyński, Tymon, 2012. "New Evidence on Linear Regression and Treatment Effect Heterogeneity," MPRA Paper 39524, University Library of Munich, Germany.
    6. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    7. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    9. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    10. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    11. Pedro H. C. Sant'Anna, 2016. "Program Evaluation with Right-Censored Data," Papers 1604.02642, arXiv.org.
    12. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    13. Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
    14. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    15. Maier, Michael, 2011. "Tests for distributional treatment effects under unconfoundedness," Economics Letters, Elsevier, vol. 110(1), pages 49-51, January.
    16. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    17. Pedro H. C. Sant’Anna, 2021. "Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 816-832, July.
    18. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    19. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    20. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.

    More about this item

    Keywords

    Average treatment effect; Conditional stochastic dominance; Poissionization; Programme evaluation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.