IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v71y2009i1p243-264.html
   My bibliography  Save this article

Non‐parametric tests for distributional treatment effect for randomly censored responses

Author

Listed:
  • Myoung‐jae Lee

Abstract

Summary. For a binary treatment ν=0, 1 and the corresponding ‘potential response’Y0 for the control group (ν=0) and Y1 for the treatment group (ν=1), one definition of no treatment effect is that Y0 and Y1 follow the same distribution given a covariate vector X. Koul and Schick have provided a non‐parametric test for no distributional effect when the realized response (1−ν)Y0+νY1 is fully observed and the distribution of X is the same across the two groups. This test is thus not applicable to censored responses, nor to non‐experimental (i.e. observational) studies that entail different distributions of X across the two groups. We propose ‘X‐matched’ non‐parametric tests generalizing the test of Koul and Schick following an idea of Gehan. Our tests are applicable to non‐experimental data with randomly censored responses. In addition to these motivations, the tests have several advantages. First, they have the intuitive appeal of comparing all available pairs across the treatment and control groups, instead of selecting a number of matched controls (or treated) in the usual pair or multiple matching. Second, whereas most matching estimators or tests have a non‐overlapping support (of X) problem across the two groups, our tests have a built‐in protection against the problem. Third, Gehan's idea allows the tests to make good use of censored observations. A simulation study is conducted, and an empirical illustration for a job training effect on the duration of unemployment is provided.

Suggested Citation

  • Myoung‐jae Lee, 2009. "Non‐parametric tests for distributional treatment effect for randomly censored responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 243-264, January.
  • Handle: RePEc:bla:jorssb:v:71:y:2009:i:1:p:243-264
    DOI: 10.1111/j.1467-9868.2008.00683.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2008.00683.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2008.00683.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro H. C. Sant’Anna, 2021. "Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 816-832, July.
    2. Sokbae (Simon) Lee & Yoon-Jae Whang, 2009. "Nonparametric tests of conditional treatment effects," CeMMAP working papers CWP36/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Yanchun Jin, 2016. "Nonparametric tests for the effect of treatment on conditional variance," KIER Working Papers 948, Kyoto University, Institute of Economic Research.
    4. Sung Jae Jun & Yoonseok Lee & Youngki Shin, 2016. "Treatment Effects With Unobserved Heterogeneity: A Set Identification Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 302-311, April.
    5. Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
    6. Maier, Michael, 2011. "Tests for distributional treatment effects under unconfoundedness," Economics Letters, Elsevier, vol. 110(1), pages 49-51, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:1:p:243-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.