IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v72y2004i4p1221-1246.html
   My bibliography  Save this article

Statistical Treatment Rules for Heterogeneous Populations

Author

Listed:
  • Charles F. Manski

Abstract

An important objective of empirical research on treatment response is to provide decision makers with information useful in choosing treatments. This paper studies minimax-regret treatment choice using the sample data generated by a classical randomized experiment. Consider a utilitarian social planner who must choose among the feasible statistical treatment rules, these being functions that map the sample data and observed covariates of population members into a treatment allocation. If the planner knew the population distribution of treatment response, the optimal treatment rule would maximize mean welfare conditional on all observed covariates. The appropriate use of covariate information is a more subtle matter when only sample data on treatment response are available. I consider the class of conditional empirical success rules; that is, rules assigning persons to treatments that yield the best experimental outcomes conditional on alternative subsets of the observed covariates. I derive a closed-form bound on the maximum regret of any such rule. Comparison of the bounds for rules that condition on smaller and larger subsets of the covariates yields sufficient sample sizes for productive use of covariate information. When the available sample size exceeds the sufficiency boundary, a planner can be certain that conditioning treatment choice on more covariates is preferable (in terms of minimax regret) to conditioning on fewer covariates. Copyright The Econometric Society 2004.

Suggested Citation

  • Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
  • Handle: RePEc:ecm:emetrp:v:72:y:2004:i:4:p:1221-1246
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2004.00530.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    2. Manski, Charles F., 2000. "Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice," Journal of Econometrics, Elsevier, vol. 95(2), pages 415-442, April.
    3. Frank Stafford, 1985. "Income-Maintenance Policy and Work Effort: Learning from Experiments and Labor-Market Studies," NBER Chapters, in: Social Experimentation, pages 95-144, National Bureau of Economic Research, Inc.
    4. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles F. Manski, 1999. "Statistical Treatment Rules for Heterogeneous Populations: With Application to Randomized Experiments," NBER Technical Working Papers 0242, National Bureau of Economic Research, Inc.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Abhijit V. Banerjee & Esther Duflo, 2009. "The Experimental Approach to Development Economics," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 151-178, May.
    4. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
    5. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    6. Steven F. Lehrer & R. Vincent Pohl & Kyungchul Song, 2016. "Targeting Policies: Multiple Testing and Distributional Treatment Effects," NBER Working Papers 22950, National Bureau of Economic Research, Inc.
    7. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
    8. Sakos, Grayson & Cerulli, Giovanni & Garbero, Alessandra, 2021. "Beyond the ATE: Idiosyncratic Effect Estimation to Uncover Distributional Impacts Results from 17 Impact Evaluations," 2021 Annual Meeting, August 1-3, Austin, Texas 314017, Agricultural and Applied Economics Association.
    9. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    10. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    11. Romain Aeberhardt & Élise Coudin & Roland Rathelot, 2017. "The heterogeneity of ethnic employment gaps," Journal of Population Economics, Springer;European Society for Population Economics, vol. 30(1), pages 307-337, January.
    12. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    13. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2017. "Can Variation in Subgroups' Average Treatment Effects Explain Treatment Effect Heterogeneity? Evidence from a Social Experiment," The Review of Economics and Statistics, MIT Press, vol. 99(4), pages 683-697, July.
    14. Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.
    15. Stefanie Behncke & Markus Frölich & Michael Lechner, 2009. "Targeting Labour Market Programmes - Results from a Randomized Experiment," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 145(III), pages 221-268, September.
    16. Charles F. Manski, 2005. "Fractional Treatment Rules for Social Diversification of Indivisible Private Risks," NBER Working Papers 11675, National Bureau of Economic Research, Inc.
    17. Bas van der Klaauw & Sandra Vriend, 2015. "A Nonparametric Method for Predicting Survival Probabilities," Tinbergen Institute Discussion Papers 15-126/V, Tinbergen Institute.
    18. Bryan S. Graham & Guido W. Imbens & Geert Ridder, 2014. "Complementarity and aggregate implications of assortative matching: A nonparametric analysis," Quantitative Economics, Econometric Society, vol. 5, pages 29-66, March.
    19. Steven F. Lehrer & R. Vincent Pohl & Kyungchul Song, 2022. "Multiple Testing and the Distributional Effects of Accountability Incentives in Education," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1552-1568, October.
    20. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:72:y:2004:i:4:p:1221-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.