IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws1602.html
   My bibliography  Save this paper

Determining the number of factors after stationary univariate transformations

Author

Listed:
  • Corona, Francisco
  • Poncela, Maria Pilar

Abstract

A very common practice when extracting factors from non-stationary multivariate timeseries is to differentiate each variable in the system. As a consequence, the ratiobetween variances and the dynamic dependence of the common and idiosyncraticdifferentiated components may change with respect to the original components. In thispaper, we analyze the effects of these changes on the finite sample properties of somepopular procedures to determine the number of factors. In particular, we consider theinformation criteria of Bai and Ng (2002), the edge distribution of Onastki (2010) andthe ratios of eigenvalues proposed by Ahn and Horenstein (2013). The performance ofthese procedures when implemented to differentiated variables depend on both theratios between variances and dependences of the differentiated factor and idiosyncraticnoises. Furthermore, we also analyze the role of the number of factors in the originalnon-stationary system as well as of its temporal and cross-sectional dimensions.

Suggested Citation

  • Corona, Francisco & Poncela, Maria Pilar, 2016. "Determining the number of factors after stationary univariate transformations," DES - Working Papers. Statistics and Econometrics. WS ws1602, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws1602
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/89cbe35b-6136-4a98-8636-3e9b2d9b4c15/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    2. Bai, Jushan & Wang, Peng, 2014. "Identification theory for high dimensional static and dynamic factor models," Journal of Econometrics, Elsevier, vol. 178(2), pages 794-804.
    3. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    4. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Testing the Number of Factors: An Empirical Assessment for a Forecasting Purpose," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 64-79, February.
    5. H. Wang, 2012. "Factor profiled sure independence screening," Biometrika, Biometrika Trust, vol. 99(1), pages 15-28.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
    8. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    9. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    10. Maximiano Pinheiro & António Rua & Francisco Dias, 2013. "Dynamic Factor Models with Jagged Edge Panel Data: Taking on Board the Dynamics of the Idiosyncratic Components," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 80-102, February.
    11. Kajal Lahiri & Wenxiong Yao, 2004. "A dynamic factor model of the coincident indicators for the US transportation sector," Applied Economics Letters, Taylor & Francis Journals, vol. 11(10), pages 595-600.
    12. Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2016. "Forecasting Consumption: the Role of Consumer Confidence in Real Time with many Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1254-1275, November.
    13. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    14. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    15. Altissimo, Filippo & Mojon, Benoit & Zaffaroni, Paolo, 2009. "Can aggregation explain the persistence of inflation?," Journal of Monetary Economics, Elsevier, vol. 56(2), pages 231-241, March.
    16. Jörg Breitung & In Choi, 2013. "Factor models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 11, pages 249-265, Edward Elgar Publishing.
      • In Choi & Jorg Breitung, 2011. "Factor models," Working Papers 1121, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Dec 2011.
    17. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
    18. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    19. Pilar Poncela & Eva Senra & Lya Paola Sierra, 2014. "Common dynamics of nonenergy commodity prices and their relation to uncertainty," Applied Economics, Taylor & Francis Journals, vol. 46(30), pages 3724-3735, October.
    20. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    21. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    22. Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
    23. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    24. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    25. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    26. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    27. Onatski, Alexei, 2015. "Asymptotic analysis of the squared estimation error in misspecified factor models," Journal of Econometrics, Elsevier, vol. 186(2), pages 388-406.
    28. Camacho Maximo & Lovcha Yuliya & Quiros Gabriel Perez, 2015. "Can we use seasonally adjusted variables in dynamic factor models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(3), pages 377-391, June.
    29. Ricardo Reis & Mark W. Watson, 2010. "Relative Goods' Prices, Pure Inflation, and the Phillips Correlation," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(3), pages 128-157, July.
    30. Claudia M. Buch & Sandra Eickmeier & Esteban Prieto, 2014. "Macroeconomic Factors and Microlevel Bank Behavior," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(4), pages 715-751, June.
    31. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    32. Clements, Michael P. & Hendry, David F. (ed.), 2011. "The Oxford Handbook of Economic Forecasting," OUP Catalogue, Oxford University Press, number 9780195398649.
    33. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    34. Jan Jacobs & Pieter Otter, 2008. "Determining the Number of Factors and Lag Order in Dynamic Factor Models: A Minimum Entropy Approach," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 385-397.
    35. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    36. Jörg Breitung & Uta Pigorsch, 2013. "A Canonical Correlation Approach for Selecting the Number of Dynamic Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 23-36, February.
    37. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    38. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    39. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    40. Davide Delle Monache & Ivan Petrella & Fabrizio Venditti, 2016. "Common Faith or Parting Ways? A Time Varying Parameters Factor Analysis of Euro-Area Inflation," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 539-565, Emerald Group Publishing Limited.
    41. Borus Jungbacker & Siem Jan Koopman, 2015. "Likelihood‐based dynamic factor analysis for measurement and forecasting," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 1-21, June.
    42. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    43. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
    44. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    45. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia Alessi & Mark Kerssenfischer, 2019. "The response of asset prices to monetary policy shocks: Stronger than thought," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 661-672, August.
    2. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    3. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    4. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    5. Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
    6. Francisco Corona & Graciela Gonz'alez-Far'ias & Jes'us L'opez-P'erez, 2021. "A nowcasting approach to generate timely estimates of Mexican economic activity: An application to the period of COVID-19," Papers 2101.10383, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
    6. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    7. Jörg Breitung & In Choi, 2013. "Factor models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 11, pages 249-265, Edward Elgar Publishing.
      • In Choi & Jorg Breitung, 2011. "Factor models," Working Papers 1121, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Dec 2011.
    8. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    9. Poncela, Pilar, 2021. "Dynamic factor models: does the specification matter?," DES - Working Papers. Statistics and Econometrics. WS 32210, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. repec:cte:wsrepe:23974 is not listed on IDEAS
    11. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    12. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    13. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    14. Francisco Corona & Pedro Orraca, 2019. "Remittances in Mexico and their unobserved components," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(8), pages 1047-1066, November.
    15. Nathan Bedock & Dalibor Stevanovic, 2017. "An empirical study of credit shock transmission in a small open economy," Canadian Journal of Economics, Canadian Economics Association, vol. 50(2), pages 541-570, May.
    16. Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
    17. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    18. Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
    19. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    20. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    21. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.

    More about this item

    Keywords

    Dynamic Factor Model;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws1602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.