IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v28i3y2010p397-409.html
   My bibliography  Save this article

A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets

Author

Listed:
  • Kapetanios, George

Abstract

The paradigm of a factor model is very appealing and has been used extensively in economic analyses. Underlying the factor model is the idea that a large number of economic variables can be adequately modelled by a small number of indicator variables. Throughout this extensive research activity on large dimensional factor models a major preoccupation has been the development of tools for determining the number of factors needed for modelling. This paper provides builds on the work of Kapetanios (2004) to provide an alternative method to information criteria as a tool for estimating the number of factors in large dimensional factor models. The new method is robust to considerable cross-sectional and temporal dependence. The theoretical properties of the method are explored and an extensive Monte Carlo study is undertaken. Results are favourable for the new method and suggest that it is a reasonable alternative to existing methods.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
  • Handle: RePEc:bes:jnlbes:v:28:i:3:y:2010:p:397-409
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jbes.2009.07239
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
    2. George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    5. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    6. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    7. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    8. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    9. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    10. Camba-Mendez, Gonzalo, et al, 2003. "Tests of Rank in Reduced Rank Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 145-155, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
    2. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    3. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    4. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    5. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    6. Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
    7. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    8. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    9. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    10. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    11. Barigozzi, Matteo & Hallin, Marc, 2020. "Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals," Journal of Econometrics, Elsevier, vol. 216(1), pages 4-34.
    12. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    13. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    14. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    15. Bai, Jushan & Liao, Yuan, 2017. "Inferences in panel data with interactive effects using large covariance matrices," Journal of Econometrics, Elsevier, vol. 200(1), pages 59-78.
    16. Borus Jungbacker & Siem Jan Koopman, 2008. "Likelihood-based Analysis for Dynamic Factor Models," Tinbergen Institute Discussion Papers 08-007/4, Tinbergen Institute, revised 20 Mar 2014.
    17. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    18. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    19. Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
    20. Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:28:i:3:y:2010:p:397-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.