IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v19y2015i3p377-391n3.html
   My bibliography  Save this article

Can we use seasonally adjusted variables in dynamic factor models?

Author

Listed:
  • Camacho Maximo

    (Universidad de Murcia, Facultad de Economia y Empresa, Departamento de Metodos Cuantitativos para la Economia y la Empresa, 30100, Murcia, Spain)

  • Lovcha Yuliya

    (Universitat Rovira i Virgili, Departmento de Economia, Av. Universitat, 1, 43204 Reus, Spain)

  • Quiros Gabriel Perez

    (Banco de España and CEPR. Calle Alcalá 48, 28014 Madrid, Spain)

Abstract

We examine the short-term performance of two alternative approaches of forecasting from dynamic factor models. The first approach extracts the seasonal component of the individual variables before estimating the model, while the alternative uses the non seasonally adjusted data in a model that endogenously accounts for seasonal adjustment. Our Monte Carlo analysis reveals that the performance of the former is always comparable to or even better than that of the latter in all the simulated scenarios. Our results have important implications for the factor models literature because they show the that the common practice of using seasonally adjusted data in this type of models is very accurate in terms of forecasting ability. Using five coincident indicators, we illustrate this result for US data.

Suggested Citation

  • Camacho Maximo & Lovcha Yuliya & Quiros Gabriel Perez, 2015. "Can we use seasonally adjusted variables in dynamic factor models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(3), pages 377-391, June.
  • Handle: RePEc:bpj:sndecm:v:19:y:2015:i:3:p:377-391:n:3
    DOI: 10.1515/snde-2013-0096
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2013-0096
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2013-0096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    2. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    3. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    4. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    5. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    6. Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Ellison & Sang Seok Lee & Kevin Hjortshøj O'Rourke, 2024. "The Ends of 27 Big Depressions," American Economic Review, American Economic Association, vol. 114(1), pages 134-168, January.
    2. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    3. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    4. Pawel M. Krolikowski & Kurt G. Lunsford, 2024. "Advance layoff notices and aggregate job loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 462-480, April.
    5. Hopp Daniel, 2022. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Journal of Official Statistics, Sciendo, vol. 38(3), pages 847-873, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
    2. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    3. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Pérez-Quirós, Gabriel & Camacho, Máximo & Alvarez, Rocio, 2012. "Finite sample performance of small versus large scale dynamic factor models," CEPR Discussion Papers 8867, C.E.P.R. Discussion Papers.
    5. Evren Erdogan Cosar & Sevim Kosem & Cagri Sarikaya, 2013. "Do We Really Need Filters In Estimating Output Gap? : Evidence From Turkey," Working Papers 1333, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    6. William A. Barnett & Marcelle Chauvetz & Danilo Leiva-Leonx, 2014. "Real-Time Nowcasting Nominal GDP Under Structural Break," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201313, University of Kansas, Department of Economics, revised Feb 2014.
    7. Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020. "A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth," International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
    8. William A. Barnett & Marcelle Chauvet & Danilo Leiva-Leon, 2014. "Real-Time Nowcasting of Nominal GDP Under Structural Breaks," Staff Working Papers 14-39, Bank of Canada.
    9. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    10. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    11. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    12. Maximo Camacho & Jaime Martinez-Martin, 2014. "Real-time forecasting US GDP from small-scale factor models," Empirical Economics, Springer, vol. 47(1), pages 347-364, August.
    13. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    14. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019. "Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland," International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
    15. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    16. Martínez-Martín, Jaime & Rusticelli, Elena, 2021. "Keeping track of global trade in real time," International Journal of Forecasting, Elsevier, vol. 37(1), pages 224-236.
    17. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    18. Modugno, Michele & Soybilgen, Barış & Yazgan, Ege, 2016. "Nowcasting Turkish GDP and news decomposition," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1369-1384.
    19. Siliverstovs Boriss & Kholodilin Konstantin A., 2012. "Assessing the Real-Time Informational Content of Macroeconomic Data Releases for Now-/Forecasting GDP: Evidence for Switzerland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 429-444, August.
    20. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.

    More about this item

    Keywords

    dynamic factor models; seasonal adjustment; short-term forecasting.;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:19:y:2015:i:3:p:377-391:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.