IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.09864.html
   My bibliography  Save this paper

Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models

Author

Listed:
  • Matteo Barigozzi

Abstract

This paper investigates the properties of Quasi Maximum Likelihood estimation of an approximate factor model for an $n$-dimensional vector of stationary time series. We prove that the factor loadings estimated by Quasi Maximum Likelihood are asymptotically equivalent, as $n\to\infty$, to those estimated via Principal Components. Both estimators are, in turn, also asymptotically equivalent, as $n\to\infty$, to the unfeasible Ordinary Least Squares estimator we would have if the factors were observed. We also show that the usual sandwich form of the asymptotic covariance matrix of the Quasi Maximum Likelihood estimator is asymptotically equivalent to the simpler asymptotic covariance matrix of the unfeasible Ordinary Least Squares. All these results hold in the general case in which the idiosyncratic components are cross-sectionally heteroskedastic, as well as serially and cross-sectionally weakly correlated. The intuition behind these results is that as $n\to\infty$ the factors can be considered as observed, thus showing that factor models enjoy a blessing of dimensionality.

Suggested Citation

  • Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2307.09864
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.09864
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breitung, Jörg & Tenhofen, Jörn, 2011. "GLS Estimation of Dynamic Factor Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1150-1166.
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation of Non-Stationary Large Approximate Dynamic Factor Models," Papers 1910.09841, arXiv.org.
    4. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    5. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Esther Ruiz & Pilar Poncela, 2022. "Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components," Foundations and Trends(R) in Econometrics, now publishers, vol. 12(2), pages 121-231, November.
    8. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    9. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    10. Y. Yu & T. Wang & R. J. Samworth, 2015. "A useful variant of the Davis–Kahan theorem for statisticians," Biometrika, Biometrika Trust, vol. 102(2), pages 315-323.
    11. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    12. Choi, In, 2012. "Efficient Estimation Of Factor Models," Econometric Theory, Cambridge University Press, vol. 28(2), pages 274-308, April.
    13. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    14. Laura Coroneo & Domenico Giannone & Michele Modugno, 2016. "Unspanned Macroeconomic Factors in the Yield Curve," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 472-485, July.
    15. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    16. Connor, Gregory & Korajczyk, Robert A. & Linton, Oliver, 2006. "The common and specific components of dynamic volatility," Journal of Econometrics, Elsevier, vol. 132(1), pages 231-255, May.
    17. Lorenzo Trapani, 2018. "A Randomized Sequential Procedure to Determine the Number of Factors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1341-1349, July.
    18. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    19. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    20. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    21. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    22. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    23. Amemiya, Yasuo & Fuller, Wayne A. & Pantula, Sastry G., 1987. "The asymptotic distributions of some estimators for a factor analysis model," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 51-64, June.
    24. Barigozzi, Matteo & Hallin, Marc, 2020. "Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals," Journal of Econometrics, Elsevier, vol. 216(1), pages 4-34.
    25. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    26. repec:hal:journl:peer-00844811 is not listed on IDEAS
    27. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    28. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    29. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    30. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    31. Donald Rubin & Dorothy Thayer, 1982. "EM algorithms for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 69-76, March.
    32. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    33. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
    34. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
    2. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    3. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    5. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    6. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    7. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    8. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    9. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    10. Rachida Ouysse, 2017. "Constrained principal components estimation of large approximate factor models," Discussion Papers 2017-12, School of Economics, The University of New South Wales.
    11. Martin Solberger & Erik Spånberg, 2020. "Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 875-900, March.
    12. Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024. "Inferential theory for generalized dynamic factor models," Journal of Econometrics, Elsevier, vol. 239(2).
    13. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    14. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    15. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    16. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    17. Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
    18. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    19. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    20. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.09864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.