IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt67h5s74t.html
   My bibliography  Save this paper

Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions

Author

Listed:
  • Pan, Li
  • Politis, Dimitris N

Abstract

In order to construct prediction intervals without the combersome--and typically unjustifiable--assumption of Gaussianity, some form of resampling is necessary. The regression set-up has been well-studies in the literature but time series prediction faces additional difficulties. The paper at hand focuses on time series that can be modeled as linear, nonlinear or nonparametric autoregressions, and develops a coherent methodology for the constructuion of bootstrap prediction intervals. Forward and backward bootstrap methods for using predictive and fitted residuals are introduced and compared. We present detailed algorithms for these different models and show that the bootstrap intervals manage to capture both sources of variability, namely the innovation error as well as essimation error. In simulations, we compare the prediction intervals associated with different methods in terms of their acheived coverage level and length of interval.

Suggested Citation

  • Pan, Li & Politis, Dimitris N, 2014. "Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions," University of California at San Diego, Economics Working Paper Series qt67h5s74t, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt67h5s74t
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/67h5s74t.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesús Miguel & Pilar Olave, 1999. "Bootstrapping forecast intervals in ARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 345-364, December.
    2. Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
    3. Pilar Olave Robio, 1999. "Forecast intervals in ARCH models: bootstrap versus parametric methods," Applied Economics Letters, Taylor & Francis Journals, vol. 6(5), pages 323-327.
    4. Dimitris Politis, 2013. "Rejoinder on: Model-free model-fitting and predictive distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 240-250, June.
    5. Arup Bose & Kanchan Mukherjee, 2003. "Estimating The Arch Parameters By Solving Linear Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 127-136, March.
    6. Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004. "Bootstrap predictive inference for ARIMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, July.
    7. Dimitris Politis, 2013. "Model-free model-fitting and predictive distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 183-221, June.
    8. Olive, David J., 2007. "Prediction intervals for regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3115-3122, March.
    9. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    10. Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    2. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    3. Sílvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2017. "Bootstrap Prediction Intervals for Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 53-69, January.
    4. Pan, Li & Politis, Dimitris, 2014. "Bootstrap prediction intervals for Markov processes," University of California at San Diego, Economics Working Paper Series qt7555757g, Department of Economics, UC San Diego.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Li & Politis, Dimitris N., 2016. "Bootstrap prediction intervals for Markov processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 467-494.
    2. Pan, Li & Politis, Dimitris, 2014. "Bootstrap prediction intervals for Markov processes," University of California at San Diego, Economics Working Paper Series qt7555757g, Department of Economics, UC San Diego.
    3. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    4. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    5. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    6. Ahmed, Wajid Shakeel & Sheikh, Jibran & Ur-Rehman, Kashif & Shafi, khuram & Shad, Shafqat Ali & Butt, Faisal Shafique, 2020. "New continuum of stochastic static forecasting model for mutual funds at investment policy level," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Felix Wick & Ulrich Kerzel & Martin Hahn & Moritz Wolf & Trapti Singhal & Daniel Stemmer & Jakob Ernst & Michael Feindt, 2021. "Demand Forecasting of Individual Probability Density Functions with Machine Learning," SN Operations Research Forum, Springer, vol. 2(3), pages 1-39, September.
    8. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    11. Abdelhakim Aknouche, 2012. "Multistage weighted least squares estimation of ARCH processes in the stable and unstable cases," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 241-256, October.
    12. Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004. "Bootstrap predictive inference for ARIMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, July.
    13. Abdelhakim Aknouche & Eid Al-Eid, 2012. "Asymptotic inference of unstable periodic ARCH processes," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 61-79, April.
    14. Trucíos, Carlos & Hotta, Luiz K., 2016. "Bootstrap prediction in univariate volatility models with leverage effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 91-103.
    15. Helmut Luetkepohl, 2007. "Econometric Analysis with Vector Autoregressive Models," Economics Working Papers ECO2007/11, European University Institute.
    16. Kim, Jae H., 2004. "Bootstrap prediction intervals for autoregression using asymptotically mean-unbiased estimators," International Journal of Forecasting, Elsevier, vol. 20(1), pages 85-97.
    17. repec:cte:wsrepe:ws011409 is not listed on IDEAS
    18. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    19. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    20. Arup Bose & Kanchan Mukherjee, 2009. "Bootstrapping a weighted linear estimator of the ARCH parameters," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 315-331, May.
    21. Xuejie Feng & Chiping Zhang, 2020. "A Perturbation Method to Optimize the Parameters of Autoregressive Conditional Heteroscedasticity Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 1021-1044, March.

    More about this item

    Keywords

    Physical Sciences and Mathematics; Confidence intervals; forecasting; time series;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt67h5s74t. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.