IDEAS home Printed from https://ideas.repec.org/a/ucp/jpolec/doi10.1086-720793.html
   My bibliography  Save this article

Personalized Pricing and Consumer Welfare

Author

Listed:
  • Jean-Pierre Dubé
  • Sanjog Misra

Abstract

We study the welfare implications of personalized pricing implemented with machine learning. We use data from a randomized controlled pricing field experiment to construct personalized prices and validate these in the field. We find that unexercised market power increases profit by 55%. Personalization improves expected profits by an additional 19% and by 86% relative to the nonoptimized price. While total consumer surplus declines under personalized pricing, over 60% of consumers benefit from personalization. Under some inequity-averse welfare functions, consumer welfare may even increase. Simulations reveal a nonmonotonic relationship between the granularity of data and consumer surplus under personalization.

Suggested Citation

  • Jean-Pierre Dubé & Sanjog Misra, 2023. "Personalized Pricing and Consumer Welfare," Journal of Political Economy, University of Chicago Press, vol. 131(1), pages 131-189.
  • Handle: RePEc:ucp:jpolec:doi:10.1086/720793
    DOI: 10.1086/720793
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1086/720793
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: http://dx.doi.org/10.1086/720793
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: https://libkey.io/10.1086/720793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
    2. Günter J. Hitsch & Sanjog Misra & Walter W. Zhang, 2024. "Heterogeneous treatment effects and optimal targeting policy evaluation," Quantitative Marketing and Economics (QME), Springer, vol. 22(2), pages 115-168, June.
    3. Diego Aparicio & Zachary Metzman & Roberto Rigobon, 2024. "The pricing strategies of online grocery retailers," Quantitative Marketing and Economics (QME), Springer, vol. 22(1), pages 1-21, March.
    4. Robert Evan Sanders, 2024. "Dynamic Pricing and Organic Waste Bans: A Study of Grocery Retailers’ Incentives to Reduce Food Waste," Marketing Science, INFORMS, vol. 43(2), pages 289-316, March.
    5. Michael Allan Ribers & Hannes Ullrich, 2023. "Machine learning and physician prescribing: a path to reduced antibiotic use," Berlin School of Economics Discussion Papers 0019, Berlin School of Economics.
    6. Robert Donnelly & Ayush Kanodia & Ilya Morozov, 2024. "Welfare Effects of Personalized Rankings," Marketing Science, INFORMS, vol. 43(1), pages 92-113, January.
    7. Tesary Lin & Avner Strulov-Shlain, 2023. "Choice Architecture, Privacy Valuations, and Selection Bias in Consumer Data," Papers 2308.13496, arXiv.org.
    8. Alexander Erlei & Mattheus Brenig & Nils Engelbrecht, 2024. "Consumer Behavior under Benevolent Price Discrimination," Papers 2404.03581, arXiv.org.
    9. Qiuyu Lu & Noriaki Matsushima & Shiva Shekhar, 2024. "Welfare Implications of Personalized Pricing in Competitive Platform Markets: The Role of Network Effects," CESifo Working Paper Series 10994, CESifo.
    10. Wenjie Bi & Bing Wang & Haiying Liu, 2024. "Personalized Dynamic Pricing Based on Improved Thompson Sampling," Mathematics, MDPI, vol. 12(8), pages 1-14, April.
    11. Esteves, Rosa-Branca & Carballo-Cruz, Francisco, 2023. "Can data openness unlock competition when an incumbent has exclusive data access for personalized pricing?," Information Economics and Policy, Elsevier, vol. 64(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucp:jpolec:doi:10.1086/720793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journals Division (email available below). General contact details of provider: https://www.journals.uchicago.edu/JPE .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.