IDEAS home Printed from https://ideas.repec.org/p/aua/wpaper/2012-3.html
   My bibliography  Save this paper

Agent based modeling for agricultural policy evaluation: A review

Author

Listed:
  • Dimitris Kremmydas

    (Department of Agricultural Economics and Rural Development, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece)

Abstract

In Agent-based computational economics economy is considered a complex system where the interactions between the economic agents are of ultimate importance. Simulating the economic system by modeling the behavior of the individual encompasses many advantages and certain epistemological issues are raised. In the analysis of Agricultural Policy, the agent based modeling (ABM) approach has been employed for studying Land Use Changes (LUCC), the dynamics of structural changes, the transmission of innovations, the simulation of water use management and for environmental modeling. This approach can help overcoming various simplifying assumptions of the traditional models (like the “homogenous agent” assumption) or the difficulty in modeling interactions. In this paper we initially do a short presentation of the principles of modeling economic systems with the ABM approach quoting its features, the advantages and disadvantages. Afterwards we make a discussion on the application of the ABM for modeling and evaluating agricultural policies and present four current application (Agripolis, Reg-MAS, MP-MAS, SWISSland). We finish this paper with some conclusions and suggestions.

Suggested Citation

  • Dimitris Kremmydas, 2012. "Agent based modeling for agricultural policy evaluation: A review," Working Papers 2012-3, Agricultural University of Athens, Department Of Agricultural Economics.
  • Handle: RePEc:aua:wpaper:2012-3
    as

    Download full text from publisher

    File URL: http://aoatools.aua.gr/RePEc/aua/wpaper/files/2012-3_kremmydas.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Happe, Kathrin & Balmann, Alfons & Kellermann, Konrad & Sahrbacher, Christoph, 2008. "Does structure matter? The impact of switching the agricultural policy regime on farm structures," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 431-444, August.
    2. Happe, K. & Hutchings, N.J. & Dalgaard, T. & Kellerman, K., 2011. "Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation," Agricultural Systems, Elsevier, vol. 104(3), pages 281-291, March.
    3. Weisbuch, Gerard, 2000. "Environment and institutions: a complex dynamical systems approach," Ecological Economics, Elsevier, vol. 35(3), pages 381-391, December.
    4. Steven N. Durlauf, 1997. "What Should Policymakers Know About Economic Complexity?," Working Papers 97-10-080, Santa Fe Institute.
    5. Norman Ehrentreich, 2008. "Agent-Based Modeling," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-73879-4, October.
    6. Balmann, Alfons, 1997. "Farm-Based Modelling of Regional Structural Change: A Cellular Automata Approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 24(1), pages 85-108.
    7. Nigel Gilbert & Pietro Terna, 2000. "How to build and use agent-based models in social science," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 57-72, March.
    8. Kathrin Happe & Alfons Balmann & Konrad Kellermann, 2003. "Structural, efficiency and income effects of direct payments: an analysis of different payment schemes for the German region 'Hohenlohe'," Others 0308001, University Library of Munich, Germany.
    9. Happe, Kathrin & Kellermann, Konrad & Balmann, Alfons, 2006. "Agent-based analysis of agricultural policies: An illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(1).
    10. Stefania Bandini & Sara Manzoni & Giuseppe Vizzari, 2009. "Agent Based Modeling and Simulation: An Informatics Perspective," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-4.
    11. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    12. Appel, Franziska & Musshoff, Oliver, 2011. "How appropriate are myopic optimization models to predict decision behaviour: A comparison between agent-based models and business management games," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115994, European Association of Agricultural Economists.
    13. James Millington & Raúl Romero-Calcerrada & John Wainwright & George Perry, 2008. "An Agent-Based Model of Mediterranean Agricultural Land-Use/Cover Change for Examining Wildfire Risk," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(4), pages 1-4.
    14. Francesco C. Billari & Thomas Fent & Alexia Prskawetz & Jürgen Scheffran, 2006. "Agent-Based Computational Modelling: An Introduction," Contributions to Economics, in: Francesco C. Billari & Thomas Fent & Alexia Prskawetz & Jürgen Scheffran (ed.), Agent-Based Computational Modelling, pages 1-16, Springer.
    15. Lobianco, Antonello & Esposti, Roberto, 2010. "The Regional Multi-Agent Simulator (RegMAS): an open-source spatially explicit model to assess the impact of agricultural policies," MPRA Paper 25817, University Library of Munich, Germany.
    16. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    17. Muaz Niazi & Amir Hussain, 2011. "Agent-based computing from multi-agent systems to agent-based models: a visual survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 479-499, November.
    18. Francesco C. Billari & Thomas Fent & Alexia Prskawetz & Jürgen Scheffran (ed.), 2006. "Agent-Based Computational Modelling," Contributions to Economics, Springer, number 978-3-7908-1721-8, January.
    19. Kaye-Blake, William & Li, Frank Y. & Martin, A. McLeish & McDermott, Alan & Neil, Hayley & Rains, Scott, 2009. "A review of Multi-Agent Simulation Models in Agriculture," 2009 Conference, August 27-28, 2009, Nelson, New Zealand 97165, New Zealand Agricultural and Resource Economics Society.
    20. Tyler Freeman & James Nolan & Richard Schoney, 2009. "An Agent‐Based Simulation Model of Structural Change in Canadian Prairie Agriculture, 1960–2000," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 537-554, December.
    21. Kaufmann, Peter & Stagl, Sigrid & Franks, Daniel W., 2009. "Simulating the diffusion of organic farming practices in two New EU Member States," Ecological Economics, Elsevier, vol. 68(10), pages 2580-2593, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    2. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    3. Cristina Vaquero-Piñeiro, 2020. "A voyage in the role of territory: are territories capable of instilling their peculiarities in local production systems," Departmental Working Papers of Economics - University 'Roma Tre' 0251, Department of Economics - University Roma Tre.
    4. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    5. Ida Nadia S. Djenontin & Leo C. Zulu & Arika Ligmann-Zielinska, 2020. "Improving Representation of Decision Rules in LUCC-ABM: An Example with an Elicitation of Farmers’ Decision Making for Landscape Restoration in Central Malawi," Sustainability, MDPI, vol. 12(13), pages 1-35, July.
    6. Baillie, Sarah & Kaye-Blake, William & Smale, Paul & Dennis, Samuel, 2016. "Simulation modelling to investigate nutrient loss mitigation practices," Agricultural Water Management, Elsevier, vol. 177(C), pages 221-228.
    7. van der Linden, Aart & de Olde, Evelien M. & Mostert, Pim F. & de Boer, Imke J.M., 2020. "A review of European models to assess the sustainability performance of livestock production systems," Agricultural Systems, Elsevier, vol. 182(C).
    8. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    9. Williams, T.G. & Guikema, S.D. & Brown, D.G. & Agrawal, A., 2020. "Resilience and equity: Quantifying the distributional effects of resilience-enhancing strategies in a smallholder agricultural system," Agricultural Systems, Elsevier, vol. 182(C).
    10. Alina Evelyn Badillo-Márquez & Alberto Alfonso Aguilar-Lasserre & Marco Augusto Miranda-Ackerman & Oscar Osvaldo Sandoval-González & Daniel Villanueva-Vásquez & Rubén Posada-Gómez, 2021. "An Agent-Based Model-Driven Decision Support System for Assessment of Agricultural Vulnerability of Sugarcane Facing Climatic Change," Mathematics, MDPI, vol. 9(23), pages 1-32, November.
    11. Kaye-Blake, William & Schilling, Chris & Monaghan, Ross & Vibart, Ronaldo & Dennis, Samuel & Post, Elizabeth, 2019. "Quantification of environmental-economic trade-offs in nutrient management policies," Agricultural Systems, Elsevier, vol. 173(C), pages 458-468.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    2. Sorda, G. & Sunak, Y. & Madlener, R., 2013. "An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany," Ecological Economics, Elsevier, vol. 89(C), pages 43-60.
    3. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    4. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    5. Djanibekov, Utkur & Finger, Robert, 2018. "Agricultural risks and farm land consolidation process in transition countries: The case of cotton production in Uzbekistan," Agricultural Systems, Elsevier, vol. 164(C), pages 223-235.
    6. Dieter Pennerstorfer, 2022. "Farm exits and competition on the land market: Evidence from spatially explicit data," Economics working papers 2022-09, Department of Economics, Johannes Kepler University Linz, Austria.
    7. Brown, Bijon & Schoney, Richard & Nolan, James, 2021. "Assessing the food vs. fuel issue: An agent-based simulation," Energy Policy, Elsevier, vol. 159(C).
    8. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    9. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    10. Sardorbek Musayev & Jonathan Mellor & Tara Walsh & Emmanouil Anagnostou, 2022. "Application of Agent-Based Modeling in Agricultural Productivity in Rural Area of Bahir Dar, Ethiopia," Forecasting, MDPI, vol. 4(1), pages 1-22, March.
    11. Bert, Federico E. & Rovere, Santiago L. & Macal, Charles M. & North, Michael J. & Podestá, Guillermo P., 2014. "Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems," Ecological Modelling, Elsevier, vol. 273(C), pages 284-298.
    12. Zheng, Chaohui & Liu, Yi & Bluemling, Bettina & Chen, Jining & Mol, Arthur P.J., 2013. "Modeling the environmental behavior and performance of livestock farmers in China: An ABM approach," Agricultural Systems, Elsevier, vol. 122(C), pages 60-72.
    13. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    14. Appel, F. & Balmann, A., 2018. "Predator or prey? - Effects of fast-growing farms on their neighborhood," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277358, International Association of Agricultural Economists.
    15. Yamashita, Ryohei & Hoshino, Satoshi, 2018. "Development of an agent-based model for estimation of agricultural land preservation in rural Japan," Agricultural Systems, Elsevier, vol. 164(C), pages 264-276.
    16. Schaefer, David & Britz, Wolfgang & Kuhn, Till, 2020. "Modelling policy induced manure transports at large scale using an agent-based simulation model," Discussion Papers 305270, University of Bonn, Institute for Food and Resource Economics.
    17. Bert, Federico E. & Podestá, Guillermo P. & Rovere, Santiago L. & Menéndez, Ángel N. & North, Michael & Tatara, Eric & Laciana, Carlos E. & Weber, Elke & Toranzo, Fernando Ruiz, 2011. "An agent based model to simulate structural and land use changes in agricultural systems of the argentine pampas," Ecological Modelling, Elsevier, vol. 222(19), pages 3486-3499.
    18. Hristov, Jordan & Clough, Yann & Sahlin, Ullrika & Smith, Henrik G. & Stjernman, Martin & Olsson, Ola & Sahrbacher, Amanda & Brady, Mark V., 2020. "Impacts of the EU's Common Agricultural Policy “Greening” reform on agricultural development, biodiversity, and ecosystem services," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(4), pages 716-738.
    19. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    20. Eigner, Amanda E. & Nuppenau, Ernst-August, 2019. "Applied spatial approach of modelling field size changes based on a consideration of farm and landscape interrelations," Agricultural Systems, Elsevier, vol. 176(C).

    More about this item

    Keywords

    Agent based modeling; Agricultural policy evaluation; Agripolis; Reg-MAS; MP-MAS; SWISSland;
    All these keywords.

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aua:wpaper:2012-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kremmydas dimitrios (email available below). General contact details of provider: https://edirc.repec.org/data/daauagr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.