IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v122y2013icp60-72.html
   My bibliography  Save this article

Modeling the environmental behavior and performance of livestock farmers in China: An ABM approach

Author

Listed:
  • Zheng, Chaohui
  • Liu, Yi
  • Bluemling, Bettina
  • Chen, Jining
  • Mol, Arthur P.J.

Abstract

The diversity of farmers is a central concern in the development of environmental policies related to livestock production. However, this diversity is largely ignored in policy making, implementation and evaluation in China. In this research, an Agent-based Nutrient Emission Model (ANEM) was developed by integrating the decision making-process of individuals into an environmental impact assessment. The agent based model facilitates an improved understanding of how farmer behavior and associated environmental consequences change according to the heterogeneity of and interactions among farmers. Decisions related to farm-scale, manure collection technologies and manure handling patterns were identified as the most relevant behavior categories when analyzing nutrient emissions. The model was applied to pig farming in Zhongjiang County in Sichuan Province of China to simulate the dynamics of local livestock production and the associated nutrient emissions during the period from 2005 to 2008. The results suggest that ANEM adequately captures real-world dynamics and can provide recommendations to policy makers.

Suggested Citation

  • Zheng, Chaohui & Liu, Yi & Bluemling, Bettina & Chen, Jining & Mol, Arthur P.J., 2013. "Modeling the environmental behavior and performance of livestock farmers in China: An ABM approach," Agricultural Systems, Elsevier, vol. 122(C), pages 60-72.
  • Handle: RePEc:eee:agisys:v:122:y:2013:i:c:p:60-72
    DOI: 10.1016/j.agsy.2013.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X13000991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2013.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Happe, K. & Hutchings, N.J. & Dalgaard, T. & Kellerman, K., 2011. "Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation," Agricultural Systems, Elsevier, vol. 104(3), pages 281-291, March.
    2. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    3. Saqalli, M. & Gérard, B. & Bielders, C.L. & Defourny, P., 2011. "Targeting rural development interventions: Empirical agent-based modeling in Nigerien villages," Agricultural Systems, Elsevier, vol. 104(4), pages 354-364, April.
    4. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    5. Komarek, Adam M. & McDonald, Cam K. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & MacLeod, Neil D. & Bellotti, William D., 2012. "Whole-farm effects of livestock intensification in smallholder systems in Gansu, China," Agricultural Systems, Elsevier, vol. 109(C), pages 16-24.
    6. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    7. Nigel Gilbert & Pietro Terna, 2000. "How to build and use agent-based models in social science," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 57-72, March.
    8. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dou, Yue & Liu, Jianguo Jack, 2017. "Modeling telecoupled systems: design for simulating telecoupled soybean trade," Conference papers 332874, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Zhong, Shen & Li, Junwei & Chen, Xi & Wen, Hongmei, 2022. "A multi-hierarchy meta-frontier approach for measuring green total factor productivity: An application of pig breeding in China," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    3. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    4. Zuo, Alec & Hou, Lingling & Huang, Zeying, 2020. "How does farmers' current usage of crop straws influence the willingness-to-accept price to sell?," Energy Economics, Elsevier, vol. 86(C).
    5. Dan Pan, 2016. "The Design of Policy Instruments towards Sustainable Livestock Production in China: An Application of the Choice Experiment Method," Sustainability, MDPI, vol. 8(7), pages 1-18, July.
    6. Tian, Qing & Holland, John H. & Brown, Daniel G., 2016. "Social and economic impacts of subsidy policies on rural development in the Poyang Lake Region, China: Insights from an agent-based model," Agricultural Systems, Elsevier, vol. 148(C), pages 12-27.
    7. Li, Jiangong & Akdeniz, Neslihan & Kim, Harrison Hyung Min & Gates, Richard S. & Wang, Xinlei & Wang, Kaiying, 2021. "Optimal manure utilization chain for distributed animal farms: Model development and a case study from Hangzhou, China," Agricultural Systems, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    2. Dimitris Kremmydas, 2012. "Agent based modeling for agricultural policy evaluation: A review," Working Papers 2012-3, Agricultural University of Athens, Department Of Agricultural Economics.
    3. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    4. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    5. Rianne Duinen & Tatiana Filatova & Wander Jager & Anne Veen, 2016. "Going beyond perfect rationality: drought risk, economic choices and the influence of social networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 57(2), pages 335-369, November.
    6. Berre, D. & Diarisso, T. & Andrieu, N. & Le Page, C. & Corbeels, M., 2021. "Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching?," Agricultural Systems, Elsevier, vol. 187(C).
    7. Quang, Dang Viet & Schreinemachers, Pepijn & Berger, Thomas, 2014. "Ex-ante assessment of soil conservation methods in the uplands of Vietnam: An agent-based modeling approach," Agricultural Systems, Elsevier, vol. 123(C), pages 108-119.
    8. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    9. Zhai, Xueting & Zhong, Dixi & Luo, Qiuju, 2019. "Turn it around in crisis communication: An ABM approach," Annals of Tourism Research, Elsevier, vol. 79(C).
    10. Soraya Tanure & Carlos Nabinger & João Luiz Becker, 2015. "Bioeconomic Model of Decision Support System for Farm Management: Proposal of a Mathematical Model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 658-671, November.
    11. Veronique Beckers & Jeroen Beckers & Matthias Vanmaercke & Etienne Van Hecke & Anton Van Rompaey & Nicolas Dendoncker, 2018. "Modelling Farm Growth and Its Impact on Agricultural Land Use: A Country Scale Application of an Agent-Based Model," Land, MDPI, vol. 7(3), pages 1-19, September.
    12. Eigner, Amanda E. & Nuppenau, Ernst-August, 2019. "Applied spatial approach of modelling field size changes based on a consideration of farm and landscape interrelations," Agricultural Systems, Elsevier, vol. 176(C).
    13. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    14. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    15. Sardorbek Musayev & Jonathan Mellor & Tara Walsh & Emmanouil Anagnostou, 2022. "Application of Agent-Based Modeling in Agricultural Productivity in Rural Area of Bahir Dar, Ethiopia," Forecasting, MDPI, vol. 4(1), pages 1-22, March.
    16. Grovermann, Christian & Schreinemachers, Pepijn & Berger, Thomas, 2015. "Evaluation of IPM adoption and financial instruments to reduce pesticide use in Thai agriculture using econometrics and agent-based modeling," 2015 Conference, August 9-14, 2015, Milan, Italy 211690, International Association of Agricultural Economists.
    17. Bert, Federico E. & Rovere, Santiago L. & Macal, Charles M. & North, Michael J. & Podestá, Guillermo P., 2014. "Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems," Ecological Modelling, Elsevier, vol. 273(C), pages 284-298.
    18. Julia Jouan & Aude Ridier & Matthieu Carof, 2018. "SYNERGY: a bio economic model assessing the economic and environmental impacts of increased regional protein self-sufficiency," Post-Print hal-01937084, HAL.
    19. Davide Natalini & Giangiacomo Bravo & Aled Wynne Jones, 2019. "Global food security and food riots – an agent-based modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(5), pages 1153-1173, October.
    20. Chion, Clément & Lamontagne, P. & Turgeon, S. & Parrott, L. & Landry, J.-A. & Marceau, D.J. & Martins, C.C.A. & Michaud, R. & Ménard, N. & Cantin, G. & Dionne, S., 2011. "Eliciting cognitive processes underlying patterns of human–wildlife interactions for agent-based modelling," Ecological Modelling, Elsevier, vol. 222(14), pages 2213-2226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:122:y:2013:i:c:p:60-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.