IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v164y2018icp264-276.html
   My bibliography  Save this article

Development of an agent-based model for estimation of agricultural land preservation in rural Japan

Author

Listed:
  • Yamashita, Ryohei
  • Hoshino, Satoshi

Abstract

In rural Japan, the lack of successors for aging farmers has become a serious problem, given that these areas experience a population outflow as well. In response, national authorities have promoted reconsideration and strengthening of regional agricultural management systems. In order to achieve consensus for such a transition, it is important to streamline this agricultural management. In this study, we constructed an analytical simulation model based on multi-agent simulations to support such changes. With this model, we investigated the effectiveness of deliberate organization of agricultural management. First, we collected data on farmer behavioral patterns and intentions. In addition, we gathered data at individual farm level with a field survey, and predicted an initial trend (Trend_Simulation). In order to compare simulations with the Trend_Simulation, we assumed that the future labor force in the model settlement was centralized and performed the work as an agricultural organization (Systematic_Simulation). The results from Trend_Simulation predicted that farmland degradation would occur from 2010 onwards, after which the amount of abandoned cultivated and fallow land would increase rapidly. In contrast, for the Systematic_Simulation, as a result of increased management efficiency through labor force accumulation and joint use of agricultural machines, abandonment of cultivated land would not occur for at least 20 more years. Finally, expansion of management scale per individual farm through land leasing between farms was predicted to decrease gradually in the Trend_Simulation, but to increase in the Systematic_Simulation.

Suggested Citation

  • Yamashita, Ryohei & Hoshino, Satoshi, 2018. "Development of an agent-based model for estimation of agricultural land preservation in rural Japan," Agricultural Systems, Elsevier, vol. 164(C), pages 264-276.
  • Handle: RePEc:eee:agisys:v:164:y:2018:i:c:p:264-276
    DOI: 10.1016/j.agsy.2018.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17300197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Happe, Kathrin & Balmann, Alfons & Kellermann, Konrad & Sahrbacher, Christoph, 2008. "Does structure matter? The impact of switching the agricultural policy regime on farm structures," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 431-444, August.
    2. Balmann, Alfons & Happe, Kathrin & Kellermann, Konrad & Kleingarn, Anne, 2001. "Adjustment Costs Of Agri-Environmental Policy Switchings - A Multi-Agent Approach," 2001 Annual meeting, August 5-8, Chicago, IL 20506, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Tian, Qing & Holland, John H. & Brown, Daniel G., 2016. "Social and economic impacts of subsidy policies on rural development in the Poyang Lake Region, China: Insights from an agent-based model," Agricultural Systems, Elsevier, vol. 148(C), pages 12-27.
    4. Troost, Christian & Berger, Thomas, 2015. "Process-based simulation of regional agricultural supply functions in Southwestern Germany using farm-level and agent-based models," 2015 Conference, August 9-14, 2015, Milan, Italy 211929, International Association of Agricultural Economists.
    5. Sante, Ines & Crecente, Rafael, 2007. "LUSE, a decision support system for exploration of rural land use allocation: Application to the Terra Cha district of Galicia (N.W. Spain)," Agricultural Systems, Elsevier, vol. 94(2), pages 341-356, May.
    6. Happe, Kathrin & Kellermann, Konrad & Balmann, Alfons, 2006. "Agent-based analysis of agricultural policies: An illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(1).
    7. van Ittersum, M. K. & Rabbinge, R. & van Latesteijn, H. C., 1998. "Exploratory land use studies and their role in strategic policy making," Agricultural Systems, Elsevier, vol. 58(3), pages 309-330, November.
    8. Joffre, Olivier M. & Bosma, Roel H. & Ligtenberg, Arend & Tri, Van Pham Dang & Ha, Tran Thi Phung & Bregt, Arnold K., 2015. "Combining participatory approaches and an agent-based model for better planning shrimp aquaculture," Agricultural Systems, Elsevier, vol. 141(C), pages 149-159.
    9. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    10. J C Campbell & J Radke & J T Gless & R M Wirtshafter, 1992. "An Application of Linear Programming and Geographic Information Systems: Cropland Allocation in Antigua," Environment and Planning A, , vol. 24(4), pages 535-549, April.
    11. Berger, Thomas & Schreinemachers, Pepijn & Woelcke, Johannes, 2006. "Multi-agent simulation for the targeting of development policies in less-favored areas," Agricultural Systems, Elsevier, vol. 88(1), pages 28-43, April.
    12. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    13. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srishti Gaur & Rajendra Singh, 2023. "A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    2. Zhangqi Zhong & Lingyun He, 2022. "Macro-Regional Economic Structural Change Driven by Micro-founded Technological Innovation Diffusion: An Agent-Based Computational Economic Modeling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 471-525, February.
    3. Veronique Beckers & Jeroen Beckers & Matthias Vanmaercke & Etienne Van Hecke & Anton Van Rompaey & Nicolas Dendoncker, 2018. "Modelling Farm Growth and Its Impact on Agricultural Land Use: A Country Scale Application of an Agent-Based Model," Land, MDPI, vol. 7(3), pages 1-19, September.
    4. Petro Dikhtiievskyi & Nataliia Zadyraka & Volodymyr Pashinskyi & Liudmyla Chupryna & Volodymyr Dikhtiievskyi, 2022. "Legal regulation of access to public information on the state of use of natural resources," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2), pages 103-123.
    5. Olena Denysiuk & Ihor Svitlyshyn & Iryna Tsaruk & Olga Vikarchuk & Andrii Dankevych, 2022. "Diversification in the enterprises? activities for sustainable development in the agricultural sector," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2), pages 85-102.
    6. Zhangqi, Zhong & Zhuli, Chen & Lingyun, He, 2022. "Technological innovation, industrial structural change and carbon emission transferring via trade-------An agent-based modeling approach," Technovation, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    2. Bert, Federico E. & Rovere, Santiago L. & Macal, Charles M. & North, Michael J. & Podestá, Guillermo P., 2014. "Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems," Ecological Modelling, Elsevier, vol. 273(C), pages 284-298.
    3. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    4. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    5. Sorda, G. & Sunak, Y. & Madlener, R., 2013. "An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany," Ecological Economics, Elsevier, vol. 89(C), pages 43-60.
    6. Bert, Federico E. & Podestá, Guillermo P. & Rovere, Santiago L. & Menéndez, Ángel N. & North, Michael & Tatara, Eric & Laciana, Carlos E. & Weber, Elke & Toranzo, Fernando Ruiz, 2011. "An agent based model to simulate structural and land use changes in agricultural systems of the argentine pampas," Ecological Modelling, Elsevier, vol. 222(19), pages 3486-3499.
    7. Dimitris Kremmydas, 2012. "Agent based modeling for agricultural policy evaluation: A review," Working Papers 2012-3, Agricultural University of Athens, Department Of Agricultural Economics.
    8. Fleskens, Luuk & Graaff, Jan de, 2010. "Conserving natural resources in olive orchards on sloping land: Alternative goal programming approaches towards effective design of cross-compliance and agri-environmental measures," Agricultural Systems, Elsevier, vol. 103(8), pages 521-534, October.
    9. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    10. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    11. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    12. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    13. Sardorbek Musayev & Jonathan Mellor & Tara Walsh & Emmanouil Anagnostou, 2022. "Application of Agent-Based Modeling in Agricultural Productivity in Rural Area of Bahir Dar, Ethiopia," Forecasting, MDPI, vol. 4(1), pages 1-22, March.
    14. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    15. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Feola, Giuseppe & Binder, Claudia R., 2010. "Towards an improved understanding of farmers' behaviour: The integrative agent-centred (IAC) framework," Ecological Economics, Elsevier, vol. 69(12), pages 2323-2333, October.
    17. Tian, Qing & Holland, John H. & Brown, Daniel G., 2016. "Social and economic impacts of subsidy policies on rural development in the Poyang Lake Region, China: Insights from an agent-based model," Agricultural Systems, Elsevier, vol. 148(C), pages 12-27.
    18. Pepijn Schreinemachers & Thomas Berger & Aer Sirijinda & Suwanna Praneetvatakul, 2009. "The Diffusion of Greenhouse Agriculture in Northern Thailand: Combining Econometrics and Agent‐Based Modeling," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 513-536, December.
    19. Chen, Assaf, 2017. "Spatially explicit modelling of agricultural dynamics in semi-arid environments," Ecological Modelling, Elsevier, vol. 363(C), pages 31-47.
    20. Djanibekov, Utkur & Finger, Robert, 2018. "Agricultural risks and farm land consolidation process in transition countries: The case of cotton production in Uzbekistan," Agricultural Systems, Elsevier, vol. 164(C), pages 223-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:164:y:2018:i:c:p:264-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.