IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.09638.html
   My bibliography  Save this paper

Optimal Execution among $N$ Traders with Transient Price Impact

Author

Listed:
  • Steven Campbell
  • Marcel Nutz

Abstract

We study $N$-player optimal execution games in an Obizhaeva--Wang model of transient price impact. When the game is regularized by an instantaneous cost on the trading rate, a unique equilibrium exists and we derive its closed form. Whereas without regularization, there is no equilibrium. We prove that existence is restored if (and only if) a very particular, time-dependent cost on block trades is added to the model. In that case, the equilibrium is particularly tractable. We show that this equilibrium is the limit of the regularized equilibria as the instantaneous cost parameter $\varepsilon$ tends to zero. Moreover, we explain the seemingly ad-hoc block cost as the limit of the equilibrium instantaneous costs. Notably, in contrast to the single-player problem, the optimal instantaneous costs do not vanish in the limit $\varepsilon\to0$. We use this tractable equilibrium to study the cost of liquidating in the presence of predators and the cost of anarchy. Our results also give a new interpretation to the erratic behaviors previously observed in discrete-time trading games with transient price impact.

Suggested Citation

  • Steven Campbell & Marcel Nutz, 2025. "Optimal Execution among $N$ Traders with Transient Price Impact," Papers 2501.09638, arXiv.org.
  • Handle: RePEc:arx:papers:2501.09638
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.09638
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Schied & Tao Zhang, 2019. "A Market Impact Game Under Transient Price Impact," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 102-121, February.
    2. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    3. Paulwin Graewe & Ulrich Horst, 2016. "Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience," Papers 1611.03435, arXiv.org, revised Jul 2017.
    4. Eyal Neuman & Moritz Voß, 2023. "Trading with the crowd," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 548-617, July.
    5. Alexander Schied & Elias Strehle & Tao Zhang, 2015. "High-frequency limit of Nash equilibria in a market impact game with transient price impact," Papers 1509.08281, arXiv.org, revised May 2017.
    6. Eyal Neuman & Moritz Vo{ss}, 2021. "Trading with the Crowd," Papers 2106.09267, arXiv.org, revised Mar 2023.
    7. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    8. Philippe Casgrain & Sebastian Jaimungal, 2020. "Mean‐field games with differing beliefs for algorithmic trading," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 995-1034, July.
    9. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    10. Ying Chen & Ulrich Horst & Hoang Hai Tran, 2019. "Portfolio liquidation under transient price impact -- theoretical solution and implementation with 100 NASDAQ stocks," Papers 1912.06426, arXiv.org.
    11. Eduardo Abi Jaber & Eyal Neuman & Moritz Vo{ss}, 2023. "Equilibrium in Functional Stochastic Games with Mean-Field Interaction," Papers 2306.05433, arXiv.org, revised Feb 2024.
    12. Ulrich Horst & Evgueni Kivman, 2024. "Optimal trade execution under small market impact and portfolio liquidation with semimartingale strategies," Finance and Stochastics, Springer, vol. 28(3), pages 759-812, July.
    13. Eyal Neuman & Moritz Vo{ss}, 2020. "Optimal Signal-Adaptive Trading with Temporary and Transient Price Impact," Papers 2002.09549, arXiv.org, revised Jan 2022.
    14. Bruce Ian Carlin & Miguel Sousa Lobo & S. Viswanathan, 2007. "Episodic Liquidity Crises: Cooperative and Predatory Trading," Journal of Finance, American Finance Association, vol. 62(5), pages 2235-2274, October.
    15. Alexander Schied & Tao Zhang, 2017. "A State-Constrained Differential Game Arising In Optimal Portfolio Liquidation," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 779-802, July.
    16. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean Field Games with Partial Information for Algorithmic Trading," Papers 1803.04094, arXiv.org, revised Mar 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guanxing Fu & Paul Hager & Ulrich Horst, 2024. "A Mean-Field Game of Market Entry," Rationality and Competition Discussion Paper Series 517, CRC TRR 190 Rationality and Competition.
    2. Guanxing Fu & Paul P. Hager & Ulrich Horst, 2024. "A Mean-Field Game of Market Entry: Portfolio Liquidation with Trading Constraints," Papers 2403.10441, arXiv.org, revised Jan 2025.
    3. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.
    4. Guanxing Fu & Paul P. Hager & Ulrich Horst, 2023. "Mean-Field Liquidation Games with Market Drop-out," Papers 2303.05783, arXiv.org, revised Sep 2023.
    5. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    6. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    7. Moritz Voß, 2022. "A two-player portfolio tracking game," Mathematics and Financial Economics, Springer, volume 16, number 6, February.
    8. Moritz Vo{ss}, 2019. "A two-player portfolio tracking game," Papers 1911.05122, arXiv.org, revised Jul 2022.
    9. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.
    10. Alessandro Micheli & Johannes Muhle‐Karbe & Eyal Neuman, 2023. "Closed‐loop Nash competition for liquidity," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1082-1118, October.
    11. Francesco Cordoni & Fabrizio Lillo, 2020. "Instabilities in Multi-Asset and Multi-Agent Market Impact Games," Papers 2004.03546, arXiv.org, revised Nov 2021.
    12. Alexander Schied & Tao Zhang, 2019. "A Market Impact Game Under Transient Price Impact," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 102-121, February.
    13. Xiangge Luo & Alexander Schied, 2018. "Nash equilibrium for risk-averse investors in a market impact game with transient price impact," Papers 1807.03813, arXiv.org, revised Jun 2019.
    14. Alexander Barzykin & Robert Boyce & Eyal Neuman, 2024. "Unwinding Toxic Flow with Partial Information," Papers 2407.04510, arXiv.org.
    15. Samuel Drapeau & Peng Luo & Alexander Schied & Dewen Xiong, 2019. "An FBSDE approach to market impact games with stochastic parameters," Papers 2001.00622, arXiv.org.
    16. Rama Cont & Alessandro Micheli & Eyal Neuman, 2022. "Fast and Slow Optimal Trading with Exogenous Information," Papers 2210.01901, arXiv.org, revised Jun 2023.
    17. Masamitsu Ohnishi & Makoto Shimoshimizu, 2024. "Trade execution games in a Markovian environment," Papers 2405.07184, arXiv.org.
    18. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2024. "Reducing Obizhaeva–Wang-type trade execution problems to LQ stochastic control problems," Finance and Stochastics, Springer, vol. 28(3), pages 813-863, July.
    19. Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.
    20. Francesco Cordoni & Fabrizio Lillo, 2022. "Transient impact from the Nash equilibrium of a permanent market impact game," Papers 2205.00494, arXiv.org, revised Mar 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.09638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.