IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.06426.html
   My bibliography  Save this paper

Portfolio liquidation under transient price impact -- theoretical solution and implementation with 100 NASDAQ stocks

Author

Listed:
  • Ying Chen
  • Ulrich Horst
  • Hoang Hai Tran

Abstract

We derive an explicit solution for deterministic market impact parameters in the Graewe and Horst (2017) portfolio liquidation model. The model allows to combine various forms of market impact, namely instantaneous, permanent and temporary. We show that the solutions to the two benchmark models of Almgren and Chris (2001) and of Obizhaeva and Wang (2013) are obtained as special cases. We relate the different forms of market impact to the microstructure of limit order book markets and show how the impact parameters can be estimated from public market data. We investigate the numerical performance of the derived optimal trading strategy based on high frequency limit order books of 100 NASDAQ stocks that represent a range of market impact profiles. It shows the strategy achieves significant cost savings compared to the benchmark models of Almgren and Chris (2001) and of Obizhaeva and Wang (2013).

Suggested Citation

  • Ying Chen & Ulrich Horst & Hoang Hai Tran, 2019. "Portfolio liquidation under transient price impact -- theoretical solution and implementation with 100 NASDAQ stocks," Papers 1912.06426, arXiv.org.
  • Handle: RePEc:arx:papers:1912.06426
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.06426
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    2. Paulwin Graewe & Ulrich Horst, 2016. "Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience," Papers 1611.03435, arXiv.org, revised Jul 2017.
    3. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    4. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach To Order Book Modeling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-40.
    5. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    6. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    7. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    8. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    9. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    10. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    11. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    12. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach to Order Book Modelling," Post-Print hal-00621253, HAL.
    13. Frederic Abergel & Aymen Jedidi, 2010. "A Mathematical Approach to Order Book Modeling," Papers 1010.5136, arXiv.org, revised Mar 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber & Eyal Neuman, 2022. "Optimal Liquidation with Signals: the General Propagator Case," Working Papers hal-03835948, HAL.
    2. Eyal Neuman & Yufei Zhang, 2023. "Statistical Learning with Sublinear Regret of Propagator Models," Papers 2301.05157, arXiv.org.
    3. Eduardo Abi Jaber & Eyal Neuman, 2022. "Optimal Liquidation with Signals: the General Propagator Case," Papers 2211.00447, arXiv.org.
    4. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    5. Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.
    6. Eyal Neuman & Moritz Vo{ss}, 2020. "Optimal Signal-Adaptive Trading with Temporary and Transient Price Impact," Papers 2002.09549, arXiv.org, revised Jan 2022.
    7. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Da Fonseca & Riadh Zaatour, 2017. "Correlation and Lead–Lag Relationships in a Hawkes Microstructure Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(3), pages 260-285, March.
    2. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    3. Weibing Huang & Mathieu Rosenbaum & Pamela Saliba, 2019. "From Glosten-Milgrom to the whole limit order book and applications to financial regulation," Papers 1902.10743, arXiv.org.
    4. Bonart, Julius & Lillo, Fabrizio, 2018. "A continuous and efficient fundamental price on the discrete order book grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 698-713.
    5. Ulrich Horst & Michael Paulsen, 2015. "A law of large numbers for limit order books," Papers 1501.00843, arXiv.org.
    6. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    7. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
    8. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    10. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    11. Julius Bonart & Fabrizio Lillo, 2016. "A continuous and efficient fundamental price on the discrete order book grid," Papers 1608.00756, arXiv.org, revised Aug 2016.
    12. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    13. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    14. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    15. Thibault Jaisson, 2015. "Liquidity and Impact in Fair Markets," Papers 1506.02507, arXiv.org.
    16. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    17. Ioane Muni Toke, 2014. "Exact and asymptotic solutions of the call auction problem," Working Papers hal-01061857, HAL.
    18. Ruihua Ruan & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2023. "The self-exciting nature of the bid-ask spread dynamics," Papers 2303.02038, arXiv.org, revised Jun 2023.
    19. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.06426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.