IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v33y2023i3p548-617.html
   My bibliography  Save this article

Trading with the crowd

Author

Listed:
  • Eyal Neuman
  • Moritz Voß

Abstract

We formulate and solve a multi‐player stochastic differential game between financial agents who seek to cost‐efficiently liquidate their position in a risky asset in the presence of jointly aggregated transient price impact, along with taking into account a common general price predicting signal. The unique Nash‐equilibrium strategies reveal how each agent's liquidation policy adjusts the predictive trading signal to the aggregated transient price impact induced by all other agents. This unfolds a quantitative relation between trading signals and the order flow in crowded markets. We also formulate and solve the corresponding mean field game in the limit of infinitely many agents. We prove that the equilibrium trading speed and the value function of an agent in the finite N‐player game converges to the corresponding trading speed and value function in the mean field game at rate O(N−2)$O(N^{-2})$. In addition, we prove that the mean field optimal strategy provides an approximate Nash‐equilibrium for the finite‐player game.

Suggested Citation

  • Eyal Neuman & Moritz Voß, 2023. "Trading with the crowd," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 548-617, July.
  • Handle: RePEc:bla:mathfi:v:33:y:2023:i:3:p:548-617
    DOI: 10.1111/mafi.12390
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12390
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olivier Féron & Peter Tankov & Laura Tinsi, 2020. "Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player," Risks, MDPI, vol. 8(4), pages 1-21, December.
    2. Alexander Schied & Tao Zhang, 2019. "A Market Impact Game Under Transient Price Impact," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 102-121, February.
    3. Caccioli, Fabio & Shrestha, Munik & Moore, Cristopher & Farmer, J. Doyne, 2014. "Stability analysis of financial contagion due to overlapping portfolios," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 233-245.
    4. Khandani, Amir E. & Lo, Andrew W., 2011. "What happened to the quants in August 2007? Evidence from factors and transactions data," Journal of Financial Markets, Elsevier, vol. 14(1), pages 1-46, February.
    5. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets with a major player," Papers 2011.07655, arXiv.org.
    6. Alexander Schied & Elias Strehle & Tao Zhang, 2015. "High-frequency limit of Nash equilibria in a market impact game with transient price impact," Papers 1509.08281, arXiv.org, revised May 2017.
    7. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    8. Caccioli, Fabio & Farmer, J. Doyne & Foti, Nick & Rockmore, Daniel, 2015. "Overlapping portfolios, contagion, and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 50-63.
    9. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    10. Eyal Neuman & Moritz Vo{ss}, 2020. "Optimal Signal-Adaptive Trading with Temporary and Transient Price Impact," Papers 2002.09549, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber & Eyal Neuman & Moritz Voss, 2023. "Equilibrium in Functional Stochastic Games with Mean-Field Interaction," Working Papers hal-04119787, HAL.
    2. Alexander Barzykin & Robert Boyce & Eyal Neuman, 2024. "Unwinding Toxic Flow with Partial Information," Papers 2407.04510, arXiv.org.
    3. Guanxing Fu & Paul P. Hager & Ulrich Horst, 2024. "A Mean-Field Game of Market Entry: Portfolio Liquidation with Trading Constraints," Papers 2403.10441, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eyal Neuman & Moritz Vo{ss}, 2021. "Trading with the Crowd," Papers 2106.09267, arXiv.org, revised Mar 2023.
    2. Alessandro Micheli & Eyal Neuman, 2020. "Evidence of Crowding on Russell 3000 Reconstitution Events," Papers 2006.07456, arXiv.org, revised Sep 2022.
    3. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    4. Christoph Aymanns & J. Doyne Farmer & Alissa M. Keinniejenhuis & Thom Wetzer, 2017. "Models of Financial Stability and their Application in Stress Tests," Working Papers on Finance 1805, University of St. Gallen, School of Finance.
    5. Caccioli, Fabio & Ferrara, Gerardo & Ramadiah, Amanah, 2024. "Modelling fire sale contagion across banks and non-banks," Journal of Financial Stability, Elsevier, vol. 71(C).
    6. Caccioli, Fabio & Ferrara, Gerardo & Ramadiah, Amanah, 2020. "Modelling fire sale contagion across banks and non-banks," Bank of England working papers 878, Bank of England, revised 18 Feb 2021.
    7. Masamitsu Ohnishi & Makoto Shimoshimizu, 2024. "Trade execution games in a Markovian environment," Papers 2405.07184, arXiv.org.
    8. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    9. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    11. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    12. Marc van Kralingen & Diego Garlaschelli & Karolina Scholtus & Iman van Lelyveld, 2020. "Crowded trades, market clustering, and price instability," Papers 2002.03319, arXiv.org.
    13. Barnett, William A. & Wang, Xue & Xu, Hai-Chuan & Zhou, Wei-Xing, 2022. "Hierarchical contagions in the interdependent financial network," Journal of Financial Stability, Elsevier, vol. 61(C).
    14. Francesco Cordoni & Fabrizio Lillo, 2022. "Transient impact from the Nash equilibrium of a permanent market impact game," Papers 2205.00494, arXiv.org, revised Mar 2023.
    15. Masaaki Fujii & Akihiko Takahashi, 2022. "Equilibrium Price Formation with a Major Player and its Mean Field Limit (Forthcoming in ESAIM: Control, Optimization and Calculus of Variations)(Revised version of CARF-F-509)," CARF F-Series CARF-F-533, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    16. Cheng, Xian & Zhao, Haichuan, 2019. "Modeling, analysis and mitigation of contagion in financial systems," Economic Modelling, Elsevier, vol. 76(C), pages 281-292.
    17. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    18. X. Zhang & L. D. Valdez & H. E. Stanley & L. A. Braunstein, 2019. "Modeling Risk Contagion in the Venture Capital Market: A Multilayer Network Approach," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    19. Poledna, Sebastian & Martínez-Jaramillo, Serafín & Caccioli, Fabio & Thurner, Stefan, 2021. "Quantification of systemic risk from overlapping portfolios in the financial system," Journal of Financial Stability, Elsevier, vol. 52(C).
    20. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:33:y:2023:i:3:p:548-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.