IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.04094.html
   My bibliography  Save this paper

Mean Field Games with Partial Information for Algorithmic Trading

Author

Listed:
  • Philippe Casgrain
  • Sebastian Jaimungal

Abstract

Financial markets are often driven by latent factors which traders cannot observe. Here, we address an algorithmic trading problem with collections of heterogeneous agents who aim to perform optimal execution or statistical arbitrage, where all agents filter the latent states of the world, and their trading actions have permanent and temporary price impact. This leads to a large stochastic game with heterogeneous agents. We solve the stochastic game by investigating its mean-field game (MFG) limit, with sub-populations of heterogeneous agents, and, using a convex analysis approach, we show that the solution is characterized by a vector-valued forward-backward stochastic differential equation (FBSDE). We demonstrate that the FBSDE admits a unique solution, obtain it in closed-form, and characterize the optimal behaviour of the agents in the MFG equilibrium. Moreover, we prove the MFG equilibrium provides an $\epsilon$-Nash equilibrium for the finite player game. We conclude by illustrating the behaviour of agents using the optimal MFG strategy through simulated examples.

Suggested Citation

  • Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean Field Games with Partial Information for Algorithmic Trading," Papers 1803.04094, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1803.04094
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.04094
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Alexander Munk, 2017. "Mini-Flash Crashes, Model Risk, and Optimal Execution," Papers 1705.09827, arXiv.org, revised Aug 2018.
    2. Olivier Guéant & Pierre Louis Lions & Jean-Michel Lasry, 2011. "Mean Field Games and Applications," Post-Print hal-01393103, HAL.
    3. Rene Carmona & Jean-Pierre Fouque & Li-Hsien Sun, 2013. "Mean Field Games and Systemic Risk," Papers 1308.2172, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moritz Vo{ss}, 2019. "A two-player portfolio tracking game," Papers 1911.05122, arXiv.org, revised Jul 2022.
    2. Christoph Belak & Daniel Hoffmann & Frank T. Seifried, 2020. "Continuous-Time Mean Field Games with Finite StateSpace and Common Noise," Working Paper Series 2020-05, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    3. Alessandro Micheli & Johannes Muhle-Karbe & Eyal Neuman, 2021. "Closed-Loop Nash Competition for Liquidity," Papers 2112.02961, arXiv.org, revised Jun 2023.
    4. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean-Field Games with Differing Beliefs for Algorithmic Trading," Papers 1810.06101, arXiv.org, revised Dec 2019.
    5. Rama Cont & Alessandro Micheli & Eyal Neuman, 2022. "Fast and Slow Optimal Trading with Exogenous Information," Papers 2210.01901, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    2. Lacker, Daniel, 2015. "Mean field games via controlled martingale problems: Existence of Markovian equilibria," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2856-2894.
    3. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean-Field Games with Differing Beliefs for Algorithmic Trading," Papers 1810.06101, arXiv.org, revised Dec 2019.
    4. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2021. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Dynamic Games and Applications, Springer, vol. 11(3), pages 463-490, September.
    5. Pierre Cardaliaguet & Charles-Albert Lehalle, 2016. "Mean Field Game of Controls and An Application To Trade Crowding," Papers 1610.09904, arXiv.org, revised Sep 2017.
    6. Marcel Nutz, 2016. "A Mean Field Game of Optimal Stopping," Papers 1605.09112, arXiv.org, revised Nov 2017.
    7. Ahuja, Saran & Ren, Weiluo & Yang, Tzu-Wei, 2019. "Forward–backward stochastic differential equations with monotone functionals and mean field games with common noise," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3859-3892.
    8. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    9. A. Bensoussan & K. Sung & S. Yam, 2013. "Linear–Quadratic Time-Inconsistent Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 537-552, December.
    10. Marjolein E. Verhulst & Philippe Debie & Stephan Hageboeck & Joost M. E. Pennings & Cornelis Gardebroek & Axel Naumann & Paul van Leeuwen & Andres A. Trujillo‐Barrera & Lorenzo Moneta, 2021. "When two worlds collide: Using particle physics tools to visualize the limit order book," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1715-1734, November.
    11. Johannes Muhle‐Karbe & Marcel Nutz & Xiaowei Tan, 2020. "Asset pricing with heterogeneous beliefs and illiquidity," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1392-1421, October.
    12. Aditya Maheshwari & Andrey Sarantsev, 2017. "Modeling Financial System with Interbank Flows, Borrowing, and Investing," Papers 1707.03542, arXiv.org, revised Oct 2018.
    13. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    14. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    15. Chen, Enxian & Qiao, Lei & Sun, Xiang & Sun, Yeneng, 2022. "Robust perfect equilibrium in large games," Journal of Economic Theory, Elsevier, vol. 201(C).
    16. Berenice Anne Neumann, 2020. "Stationary Equilibria of Mean Field Games with Finite State and Action Space," Dynamic Games and Applications, Springer, vol. 10(4), pages 845-871, December.
    17. Karvik, Geir-Are & Noss, Joseph & Worlidge, Jack & Beale, Daniel, 2018. "The deeds of speed: an agent-based model of market liquidity and flash episodes," Bank of England working papers 743, Bank of England.
    18. Matteo Basei & Huyên Pham, 2019. "A Weak Martingale Approach to Linear-Quadratic McKean–Vlasov Stochastic Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 347-382, May.
    19. Yves Achdou & Pierre-Noël Giraud & Jean-Michel Lasry & Pierre Louis Lions, 2016. "A Long-Term Mathematical Model for Mining Industries," Post-Print hal-01412551, HAL.
    20. Kashif Mehmood & Muhammad Tabish Niaz & Hyung Seok Kim, 2019. "A Power Control Mean Field Game Framework for Battery Lifetime Enhancement of Coexisting Machine-Type Communications," Energies, MDPI, vol. 12(20), pages 1-23, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.04094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.