IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.00607.html
   My bibliography  Save this paper

Risk models from tree-structured Markov random fields following multivariate Poisson distributions

Author

Listed:
  • H'el`ene Cossette
  • Benjamin C^ot'e
  • Alexandre Dubeau
  • Etienne Marceau

Abstract

We propose risk models for a portfolio of risks, each following a compound Poisson distribution, with dependencies introduced through a family of tree-based Markov random fields with Poisson marginal distributions inspired in C\^ot\'e et al. (2024b, arXiv:2408.13649). The diversity of tree topologies allows for the construction of risk models under several dependence schemes. We study the distribution of the random vector of risks and of the aggregate claim amount of the portfolio. We perform two risk management tasks: the assessment of the global risk of the portfolio and its allocation to each component. Numerical examples illustrate the findings and the efficiency of the computation methods developed throughout. We also show that the discussed family of Markov random fields is a subfamily of the multivariate Poisson distribution constructed through common shocks.

Suggested Citation

  • H'el`ene Cossette & Benjamin C^ot'e & Alexandre Dubeau & Etienne Marceau, 2024. "Risk models from tree-structured Markov random fields following multivariate Poisson distributions," Papers 2412.00607, arXiv.org.
  • Handle: RePEc:arx:papers:2412.00607
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.00607
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Karlis, 2003. "An EM algorithm for multivariate Poisson distribution and related models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(1), pages 63-77.
    2. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    3. Denuit, Michel & Dhaene, Jan, 2012. "Convex order and comonotonic conditional mean risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 265-270.
    4. Oberoi, Jaideep S. & Pittea, Aniketh & Tapadar, Pradip, 2020. "A graphical model approach to simulating economic variables over long horizons," Annals of Actuarial Science, Cambridge University Press, vol. 14(1), pages 20-41, March.
    5. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    6. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    7. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    8. Michel Denuit & Jan Dhaene & Christian Y. Robert, 2022. "Risk‐sharing rules and their properties, with applications to peer‐to‐peer insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 615-667, September.
    9. Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
    10. Genest, Christian & Mesfioui, Mhamed & Schulz, Juliana, 2018. "A new bivariate Poisson common shock model covering all possible degrees of dependence," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 202-209.
    11. Joseph H. T. Kim & Jiwook Jang & Chaehyun Pyun, 2019. "Capital Allocation for a Sum of Dependent Compound Mixed Poisson Variables: A Recursive Algorithm Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(1), pages 82-97, January.
    12. Juliana Schulz & Christian Genest & Mhamed Mesfioui, 2021. "A multivariate Poisson model based on comonotonic shocks," International Statistical Review, International Statistical Institute, vol. 89(2), pages 323-348, August.
    13. Denuit, Michel & Robert, Christian Y., 2022. "Conditional mean risk sharing in the individual model with graphical dependencies," LIDAM Reprints ISBA 2022020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Denuit, Michel & Robert, Christian Y., 2022. "Dynamic conditional mean risk sharing in the compound Poisson surplus model," LIDAM Discussion Papers ISBA 2022034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Helmut Mausser & Oleksandr Romanko, 2018. "Long-only equal risk contribution portfolios for CVaR under discrete distributions," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1927-1945, November.
    16. Denuit, Michel & Robert, Christian Y., 2022. "Conditional mean risk sharing in the individual model with graphical dependencies," Annals of Actuarial Science, Cambridge University Press, vol. 16(1), pages 183-209, March.
    17. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    18. Na Ren & Xin Zhang, 2024. "A novel k-generation propagation model for cyber risk and its application to cyber insurance," Papers 2408.14151, arXiv.org.
    19. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    20. Michel Denuit & Christian Genest & Étienne Marceau, 2002. "Criteria for the Stochastic Ordering of Random Sums, with Actuarial Applications," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2002(1), pages 3-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    2. Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
    3. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    4. Cossette, Hélène & Marceau, Etienne & Perreault, Samuel, 2015. "On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 214-224.
    5. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    6. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    7. Fallou Niakh, 2023. "A fixed point approach for computing actuarially fair Pareto optimal risk-sharing rules," Papers 2303.05421, arXiv.org, revised Jul 2023.
    8. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    9. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Impact of Dependence on Some Multivariate Risk Indicators," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 395-427, June.
    10. repec:hal:wpaper:hal-01171395 is not listed on IDEAS
    11. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    12. Ren Jiandong & Zitikis Ricardas, 2017. "CMPH: a multivariate phase-type aggregate loss distribution," Dependence Modeling, De Gruyter, vol. 5(1), pages 304-315, December.
    13. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    14. Tim J. Boonen & Wing Fung Chong & Mario Ghossoub, 2024. "Pareto‐efficient risk sharing in centralized insurance markets with application to flood risk," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 91(2), pages 449-488, June.
    15. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    16. Cheung, Ka Chun & Phillip Yam, Sheung Chi & Yuen, Fei Lung & Zhang, Yiying, 2020. "Concave distortion risk minimizing reinsurance design under adverse selection," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 155-165.
    17. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    19. Jan L. M. Dhaene & Moshe A. Milevsky, 2024. "Egalitarian pooling and sharing of longevity risk', a.k.a. 'The many ways to skin a tontine cat," Papers 2402.00855, arXiv.org.
    20. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    21. Mario Ghossoub & Giulio Principi & Ruodu Wang, 2024. "Allocation Mechanisms in Decentralized Exchange Markets with Frictions," Papers 2404.10900, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.00607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.