IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v52y2013i3p560-572.html
   My bibliography  Save this article

Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation

Author

Listed:
  • Cossette, Hélène
  • Côté, Marie-Pier
  • Marceau, Etienne
  • Moutanabbir, Khouzeima

Abstract

In this paper, we investigate risk aggregation and capital allocation problems for a portfolio of possibly dependent risks whose multivariate distribution is defined with the Farlie–Gumbel–Morgenstern copula and mixed Erlang distribution marginals. In such a context, we first show that the aggregate claim amount has a mixed Erlang distribution. Based on a top-down approach, closed-form expressions for the contribution of each risk are derived using the TVaR and covariance rules. These findings are illustrated with numerical examples.

Suggested Citation

  • Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
  • Handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:560-572
    DOI: 10.1016/j.insmatheco.2013.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713000486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Artzner, 1999. "Application of Coherent Risk Measures to Capital Requirements in Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 11-25.
    2. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    3. Cherubini, Umberto & Mulinacci, Sabrina & Romagnoli, Silvia, 2011. "A copula-based model of speculative price dynamics in discrete time," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1047-1063, July.
    4. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    5. Hayette Gatfaoui, 2003. "How Does Systematic Risk Impact US Credit Spreads? A Copula Study," Risk and Insurance 0308002, University Library of Munich, Germany.
    6. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    7. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    8. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    9. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    10. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    11. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    12. Cossette, Hélène & Marceau, Etienne & Marri, Fouad, 2008. "On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 444-455, December.
    13. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    14. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    15. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    16. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    17. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    2. H'el`ene Cossette & Etienne Marceau & Alessandro Mutti & Patrizia Semeraro, 2024. "Generalized FGM dependence: Geometrical representation and convex bounds on sums," Papers 2406.10648, arXiv.org, revised Oct 2024.
    3. Gildas Ratovomirija, 2015. "Multivariate Stop loss Mixed Erlang Reinsurance risk: Aggregation, Capital allocation and Default risk," Papers 1501.07297, arXiv.org.
    4. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    5. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    6. Brandt, Nikolai M. & Eckwert, Bernhard & Várdy, Felix, 2021. "Bayesian learning with variable prior," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    7. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    8. Mejdoub, Hanène & Ben Arab, Mounira, 2018. "Impact of dependence modeling of non-life insurance risks on capital requirement: D-Vine Copula approach," Research in International Business and Finance, Elsevier, vol. 45(C), pages 208-218.
    9. Belles-Sampera, Jaume & Guillén, Montserrat & Santolino, Miguel, 2014. "GlueVaR risk measures in capital allocation applications," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 132-137.
    10. Sarabia, José María & Gómez-Déniz, Emilio & Prieto, Faustino & Jordá, Vanesa, 2016. "Risk aggregation in multivariate dependent Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 154-163.
    11. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
    12. Genest, Christian & Hron, Karel & Nešlehová, Johanna G., 2023. "Orthogonal decomposition of multivariate densities in Bayes spaces and relation with their copula-based representation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    13. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    14. Raluca Vernic, 2017. "Capital Allocation for Sarmanov’s Class of Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 311-330, March.
    15. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    16. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    17. Woo, Jae-Kyung, 2016. "On multivariate discounted compound renewal sums with time-dependent claims in the presence of reporting/payment delays," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 354-363.
    18. Ratovomirija, Gildas & Tamraz, Maissa & Vernic, Raluca, 2017. "On some multivariate Sarmanov mixed Erlang reinsurance risks: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 197-209.
    19. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    20. Marri, Fouad & Moutanabbir, Khouzeima, 2022. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 75-90.
    21. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    22. Yin, Cuihong & Sheldon Lin, X. & Huang, Rongtan & Yuan, Haili, 2019. "On the consistency of penalized MLEs for Erlang mixtures," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 12-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    2. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    3. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    4. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    5. Cossette, Hélène & Marceau, Etienne & Perreault, Samuel, 2015. "On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 214-224.
    6. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    7. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    8. Gao, Fuqing & Wang, Shaochen, 2011. "Asymptotic behavior of the empirical conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 345-352.
    9. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    10. Yiting Fan & Rui Fang, 2022. "Some Results on Measures of Interaction among Risks," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    11. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    12. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    13. Ren Jiandong & Zitikis Ricardas, 2017. "CMPH: a multivariate phase-type aggregate loss distribution," Dependence Modeling, De Gruyter, vol. 5(1), pages 304-315, December.
    14. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    15. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    16. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    17. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    18. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    19. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    20. Csóka, Péter, 2017. "Fair risk allocation in illiquid markets," Finance Research Letters, Elsevier, vol. 21(C), pages 228-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:560-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.