IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v23y2019i1p82-97.html
   My bibliography  Save this article

Capital Allocation for a Sum of Dependent Compound Mixed Poisson Variables: A Recursive Algorithm Approach

Author

Listed:
  • Joseph H. T. Kim
  • Jiwook Jang
  • Chaehyun Pyun

Abstract

The sum of independent compound Poisson random variables is a widely used stochastic model in many economic applications, including non-life insurance, credit and operational risk management, and environmental sciences. In this article we generalize this model by introducing dependence among Poisson frequency variables through a latent random variable in a linear fashion, which can be translated as a common underlying risk factors affecting the frequencies of individual compound Poisson variables. Despite its natural interpretation, this generalization leads to a highly complicated model with no closed-form distribution function. For this dependent compound mixed Poisson sum with an arbitrary severity distribution, we obtain the Laplace transform and further develop a new recursive algorithm to efficiently compute the probability mass function, extending the well-known Panjer recursion. Furthermore, based on this recursion, we derive another recursive scheme to determine the capital allocation associated with the Conditional Tail Expectation, a popular risk management exercise. A numerical example is presented for the illustration of our findings.

Suggested Citation

  • Joseph H. T. Kim & Jiwook Jang & Chaehyun Pyun, 2019. "Capital Allocation for a Sum of Dependent Compound Mixed Poisson Variables: A Recursive Algorithm Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(1), pages 82-97, January.
  • Handle: RePEc:taf:uaajxx:v:23:y:2019:i:1:p:82-97
    DOI: 10.1080/10920277.2018.1506705
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2018.1506705
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2018.1506705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel, 2019. "Size-biased risk measures of compound sums," LIDAM Discussion Papers ISBA 2019009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Michel Denuit & Christian Y. Robert, 2022. "Conditional Tail Expectation Decomposition and Conditional Mean Risk Sharing for Dependent and Conditionally Independent Losses," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1953-1985, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:23:y:2019:i:1:p:82-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.