IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v89y2021i2p323-348.html
   My bibliography  Save this article

A multivariate Poisson model based on comonotonic shocks

Author

Listed:
  • Juliana Schulz
  • Christian Genest
  • Mhamed Mesfioui

Abstract

Multivariate count data arise naturally in practice. In analysing such data, it is critical to define a model that can accurately capture the underlying dependence structure between the counts. To this end, this paper develops a multivariate model wherein correlated Poisson margins are generated by a comonotonic shock vector. The proposed model allows for greater flexibility in the dependence structure than that of the classical construction, which relies on the convolution of vectors of common Poisson shock variables. Several probabilistic properties of the multivariate comonotonic shock Poisson model are established, and various estimation strategies are discussed in detail. The model is further studied through simulations, and its utility is highlighted using a real data application.

Suggested Citation

  • Juliana Schulz & Christian Genest & Mhamed Mesfioui, 2021. "A multivariate Poisson model based on comonotonic shocks," International Statistical Review, International Statistical Institute, vol. 89(2), pages 323-348, August.
  • Handle: RePEc:bla:istatr:v:89:y:2021:i:2:p:323-348
    DOI: 10.1111/insr.12408
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12408
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sellers, Kimberly F. & Morris, Darcy Steeg & Balakrishnan, Narayanaswamy, 2016. "Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties, and inference," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 152-168.
    2. Dimitris Karlis, 2003. "An EM algorithm for multivariate Poisson distribution and related models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(1), pages 63-77.
    3. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    4. Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
    5. Michael S. Smith & Mohamad A. Khaled, 2012. "Estimation of Copula Models With Discrete Margins via Bayesian Data Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 290-303, March.
    6. Genest, Christian & Mesfioui, Mhamed & Schulz, Juliana, 2018. "A new bivariate Poisson common shock model covering all possible degrees of dependence," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 202-209.
    7. van Ophem, Hans, 1999. "A General Method To Estimate Correlated Discrete Random Variables," Econometric Theory, Cambridge University Press, vol. 15(2), pages 228-237, April.
    8. Pfeifer, Dietmar & Nešlehová, Johana, 2004. "Modeling and Generating Dependent Risk Processes for IRM and DFA," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 333-360, November.
    9. Gómez-Déniz, Emilio & Sarabia, José María & Balakrishnan, N., 2012. "A Multivariate Discrete Poisson-Lindley Distribution: Extensions and Actuarial Applications," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 655-678, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    2. Lluís Bermúdez & Dimitris Karlis, 2022. "Copula-based bivariate finite mixture regression models with an application for insurance claim count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1082-1099, December.
    3. Calabrese, Raffaella & Degl’Innocenti, Marta & Osmetti, Silvia Angela, 2017. "The effectiveness of TARP-CPP on the US banking industry: A new copula-based approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1029-1037.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Zilko, Aurelius A. & Kurowicka, Dorota, 2016. "Copula in a multivariate mixed discrete–continuous model," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 28-55.
    6. Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    7. Huihui Lin & N. Rao Chaganty, 2021. "Multivariate distributions of correlated binary variables generated by pair-copulas," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-14, December.
    8. F. Louzada & P. H. Ferreira, 2016. "Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2956-2976, December.
    9. Bijwaard, G.E. & Franses, Ph.H.B.F., 2006. "Does rounding matter for payment efficiency?," Econometric Institute Research Papers EI 2006-43, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    11. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    12. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    13. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    14. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    15. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    16. Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
    17. Kalema, George & Molenberghs, Geert, 2016. "Generating Correlated and/or Overdispersed Count Data: A SAS Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(c01).
    18. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    19. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    20. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:89:y:2021:i:2:p:323-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.