IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.14151.html
   My bibliography  Save this paper

A novel k-generation propagation model for cyber risk and its application to cyber insurance

Author

Listed:
  • Na Ren
  • Xin Zhang

Abstract

The frequent occurrence of cyber risks and their serious economic consequences have created a growth market for cyber insurance. The calculation of aggregate losses, an essential step in insurance pricing, has attracted considerable attention in recent years. This research develops a path-based k-generation risk contagion model in a tree-shaped network structure that incorporates the impact of the origin contagion location and the heterogeneity of security levels on contagion probability and local loss, distinguishing it from most existing models. Furthermore, we discuss the properties of k-generation risk contagion among multi-paths using the concept of d-separation in Bayesian network (BN), and derive explicit expressions for the mean and variance of local loss on a single path. By combining these results, we compute the mean and variance values for aggregate loss across the entire network until time $t$, which is crucial for accurate cyber insurance pricing. Finally, through numerical calculations and relevant probability properties, we have obtained several findings that are valuable to risk managers and insurers.

Suggested Citation

  • Na Ren & Xin Zhang, 2024. "A novel k-generation propagation model for cyber risk and its application to cyber insurance," Papers 2408.14151, arXiv.org.
  • Handle: RePEc:arx:papers:2408.14151
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.14151
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    2. Bessy-Roland, Yannick & Boumezoued, Alexandre & Hillairet, Caroline, 2021. "Multivariate Hawkes process for cyber insurance," Annals of Actuarial Science, Cambridge University Press, vol. 15(1), pages 14-39, March.
    3. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, June.
    4. Zhang, Xiaoyuan & Zhang, Tianqi, 2022. "Dynamic credit contagion and aggregate loss in networks," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    5. Fahrenwaldt, Matthias A. & Weber, Stefan & Weske, Kerstin, 2018. "Pricing Of Cyber Insurance Contracts In A Network Model," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1175-1218, September.
    6. Maochao Xu & Lei Hua, 2019. "Cybersecurity Insurance: Modeling and Pricing," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(2), pages 220-249, April.
    7. Eling, Martin & Wirfs, Jan, 2019. "What are the actual costs of cyber risk events?," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1109-1119.
    8. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    9. Da, Gaofeng & Xu, Maochao & Zhao, Peng, 2021. "Multivariate dependence among cyber risks based on L-hop propagation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 525-546.
    10. Hillairet, Caroline & Lopez, Olivier & d'Oultremont, Louise & Spoorenberg, Brieuc, 2022. "Cyber-contagion model with network structure applied to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 88-101.
    11. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H'el`ene Cossette & Benjamin C^ot'e & Alexandre Dubeau & Etienne Marceau, 2024. "Risk models from tree-structured Markov random fields following multivariate Poisson distributions," Papers 2412.00607, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    2. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    3. Da, Gaofeng & Xu, Maochao & Zhao, Peng, 2021. "Multivariate dependence among cyber risks based on L-hop propagation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 525-546.
    4. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    5. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    6. Ma, Boyuan & Chu, Tingjin & Jin, Zhuo, 2022. "Frequency and severity estimation of cyber attacks using spatial clustering analysis," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 33-45.
    7. Zhang, Xiaoyu & Xu, Maochao & Su, Jianxi & Zhao, Peng, 2023. "Structural models for fog computing based internet of things architectures with insurance and risk management applications," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1273-1291.
    8. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    9. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Matteo Malavasi & Gareth W. Peters & Stefan Treuck & Pavel V. Shevchenko & Jiwook Jang & Georgy Sofronov, 2024. "Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications," Papers 2410.05297, arXiv.org.
    11. Yin-Yee Leong & Yen-Chih Chen, 2020. "Cyber risk cost and management in IoT devices-linked health insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 737-759, October.
    12. Frank Cremer & Barry Sheehan & Michael Fortmann & Arash N. Kia & Martin Mullins & Finbarr Murphy & Stefan Materne, 2022. "Cyber risk and cybersecurity: a systematic review of data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 698-736, July.
    13. Yin-Yee Leong & Yen-Chih Chen, 0. "Cyber risk cost and management in IoT devices-linked health insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-23.
    14. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    15. Benjamin Avanzi & Xingyun Tan & Greg Taylor & Bernard Wong, 2023. "On the evolution of data breach reporting patterns and frequency in the United States: a cross-state analysis," Papers 2310.04786, arXiv.org, revised Jun 2024.
    16. Pavel V. Shevchenko & Jiwook Jang & Matteo Malavasi & Gareth W. Peters & Georgy Sofronov & Stefan Truck, 2022. "The Nature of Losses from Cyber-Related Events: Risk Categories and Business Sectors," Papers 2202.10189, arXiv.org, revised Mar 2022.
    17. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    18. Michel Dacorogna & Marie Kratz, 2022. "Special Issue “Cyber Risk and Security”," Risks, MDPI, vol. 10(6), pages 1-4, May.
    19. Kerstin Awiszus & Yannick Bell & Jan Luttringhaus & Gregor Svindland & Alexander Vo{ss} & Stefan Weber, 2022. "Building Resilience in Cybersecurity -- An Artificial Lab Approach," Papers 2211.04762, arXiv.org, revised Sep 2023.
    20. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang, 2022. "Cyber Loss Model Risk Translates to Premium Mispricing and Risk Sensitivity," Papers 2202.10588, arXiv.org, revised Mar 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.14151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.