IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v16y2022i1p183-209_10.html
   My bibliography  Save this article

Conditional mean risk sharing in the individual model with graphical dependencies

Author

Listed:
  • Denuit, Michel
  • Robert, Christian Y.

Abstract

Conditional mean risk sharing appears to be effective to distribute total losses amongst participants within an insurance pool. This paper develops analytical results for this allocation rule in the individual risk model with dependence induced by the respective position within a graph. Precisely, losses are modelled by zero-augmented random variables whose joint occurrence distribution and individual claim amount distributions are based on network structures and can be characterised by graphical models. The Ising model is adopted for occurrences and loss amounts obey decomposable graphical models that are specific to each participant. Two graphical structures are thus used: the first one to describe the contagion amongst member units within the insurance pool and the second one to model the spread of losses inside each participating unit. The proposed individual risk model is typically useful for modelling operational risks, catastrophic risks or cybersecurity risks.

Suggested Citation

  • Denuit, Michel & Robert, Christian Y., 2022. "Conditional mean risk sharing in the individual model with graphical dependencies," Annals of Actuarial Science, Cambridge University Press, vol. 16(1), pages 183-209, March.
  • Handle: RePEc:cup:anacsi:v:16:y:2022:i:1:p:183-209_10
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499521000166/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:16:y:2022:i:1:p:183-209_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.