IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00870224.html
   My bibliography  Save this paper

Properties of a risk measure derived from the expected area in red

Author

Listed:
  • Stéphane Loisel

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Julien Trufin

    (Ecole d'Actuariat - ULaval - Université Laval [Québec])

Abstract

This paper studies a new risk measure derived from the expected area in red introduced in Loisel (2005). Specifically, we derive various properties of a risk measure defined as the smallest initial capital needed to ensure that the expected time-integrated negative part of the risk process on a fixed time interval [0; T] (T can be infinite) is less than a given predetermined risk limit. We also investigate the optimal risk limit allocation: given a risk limit set at company level for the sum of the expected areas in red of all lines, we determine the way(s) to allocate this risk limit to the subsequent business lines in order to minimize the overall capital needs.

Suggested Citation

  • Stéphane Loisel & Julien Trufin, 2014. "Properties of a risk measure derived from the expected area in red," Post-Print hal-00870224, HAL.
  • Handle: RePEc:hal:journl:hal-00870224
    Note: View the original document on HAL open archive server: https://hal.science/hal-00870224
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00870224/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Gerber, Hans U., 1988. "Mathematical fun with ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 15-23, January.
    3. Stéphane Loisel, 2005. "Differentiation of some functionals of risk processes and optimal reserve allocation," Post-Print hal-00397289, HAL.
    4. Picard, Philippe, 1994. "On some measures of the severity of ruin in the classical Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 14(2), pages 107-115, May.
    5. Stéphane Loisel, 2005. "Differentiation of functionals of risk processes and optimal reserve allocation," Post-Print hal-00397290, HAL.
    6. Stéphane Loisel, 2005. "Differentiation of some functionals of risk processes," Post-Print hal-00157739, HAL.
    7. Jan Dhaene & Mark Goovaerts & Rob Kaas, 2003. "Economic Capital Allocation Derived from Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 44-56.
    8. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    9. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    10. Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2006. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 10(3), pages 427-448, September.
    11. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    12. Julien Trufin & Hansjoerg Albrecher & Michel M Denuit, 2011. "Properties of a Risk Measure Derived from Ruin Theory," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 36(2), pages 174-188, December.
    13. Dufresne, Francois & Gerber, Hans U., 1988. "The surpluses immediately before and at ruin, and the amount of the claim causing ruin," Insurance: Mathematics and Economics, Elsevier, vol. 7(3), pages 193-199, October.
    14. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    15. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    16. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.
    2. Eva Boj del Val & M. Mercè Claramunt Bielsa & Xavier Varea Soler, 2020. "Role of Private Long-Term Care Insurance in Financial Sustainability for an Aging Society," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    3. Julien Callant & Julien Trufin & Pierre Zuyderhoff, 2022. "Some Expressions of a Generalized Version of the Expected Time in the Red and the Expected Area in Red," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 595-611, June.
    4. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    5. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    6. Hirbod Assa & Manuel Morales & Hassan Omidi Firouzi, 2016. "On the Capital Allocation Problem for a New Coherent Risk Measure in Collective Risk Theory," Risks, MDPI, vol. 4(3), pages 1-20, August.
    7. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    8. Jiandong Ren & Kristina Sendova & Ričardas Zitikis, 2019. "Special Issue “Risk, Ruin and Survival: Decision Making in Insurance and Finance”," Risks, MDPI, vol. 7(3), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:wpaper:hal-00870224 is not listed on IDEAS
    2. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    3. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    4. Cénac P. & Maume-Deschamps V. & Prieur C., 2012. "Some multivariate risk indicators: Minimization by using a Kiefer–Wolfowitz approach to the mirror stochastic algorithm," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 47-72, March.
    5. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    6. Julien Callant & Julien Trufin & Pierre Zuyderhoff, 2022. "Some Expressions of a Generalized Version of the Expected Time in the Red and the Expected Area in Red," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 595-611, June.
    7. Liu, Jingchen & Woo, Jae-Kyung, 2014. "Asymptotic analysis of risk quantities conditional on ruin for multidimensional heavy-tailed random walks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 1-9.
    8. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.
    9. Romain Biard, 2013. "Asymptotic multivariate finite-time ruin probabilities with heavy-tailed claim amounts: Impact of dependence and optimal reserve allocation," Post-Print hal-00538571, HAL.
    10. Peggy Cénac & Stéphane Loisel & Véronique Maume-Deschamps & Clémentine Prieur, 2014. "Risk indicators with several lines of business: comparison, asymptotic behavior and applications to optimal reserve allocation," Post-Print hal-00816894, HAL.
    11. Macci, Claudio, 2008. "Large deviations for the time-integrated negative parts of some processes," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 75-83, January.
    12. G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2018. "An optimization approach to adaptive multi-dimensional capital management," Papers 1812.08435, arXiv.org.
    13. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    14. Zhu, Jinxia & Yang, Hailiang, 2009. "On differentiability of ruin functions under Markov-modulated models," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1673-1695, May.
    15. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    16. Romain Biard & Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Stéphane Loisel, 2013. "Impact of Climate Change on Heat Wave Risk," Risks, MDPI, vol. 1(3), pages 1-16, December.
    17. Esther Frostig & Adva Keren–Pinhasik, 2017. "Parisian ruin in the dual model with applications to the G/M/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 261-275, August.
    18. Florin Avram & Sooie-Hoe Loke, 2018. "On Central Branch/Reinsurance Risk Networks: Exact Results and Heuristics," Risks, MDPI, vol. 6(2), pages 1-18, April.
    19. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    20. Denuit, Michel & Robert, Christian Y., 2022. "Dynamic conditional mean risk sharing in the compound Poisson surplus model," LIDAM Discussion Papers ISBA 2022034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Goovaerts, M. J. & Dhaene, J., 1999. "Supermodular ordering and stochastic annuities," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 281-290, May.

    More about this item

    Keywords

    Ruin probability; risk measure; expected area in red; stochastic ordering; risk limit;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00870224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.