IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.09771.html
   My bibliography  Save this paper

Bayesian estimation of finite mixtures of Tobit models

Author

Listed:
  • Caio Waisman

Abstract

This paper outlines a Bayesian approach to estimate finite mixtures of Tobit models. The method consists of an MCMC approach that combines Gibbs sampling with data augmentation and is simple to implement. I show through simulations that the flexibility provided by this method is especially helpful when censoring is not negligible. In addition, I demonstrate the broad utility of this methodology with applications to a job training program, labor supply, and demand for medical care. I find that this approach allows for non-trivial additional flexibility that can alter results considerably and beyond improving model fit.

Suggested Citation

  • Caio Waisman, 2024. "Bayesian estimation of finite mixtures of Tobit models," Papers 2411.09771, arXiv.org.
  • Handle: RePEc:arx:papers:2411.09771
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.09771
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.09771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.