Bayesian subgroup analysis in regression using mixture models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2021.107252
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
- Jeffrey W. Miller & Matthew T. Harrison, 2018. "Mixture Models With a Prior on the Number of Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 340-356, January.
- Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
- Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
- Basu S. & Chib S., 2003. "Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 224-235, January.
- Maria De Iorio & Wesley O. Johnson & Peter Müller & Gary L. Rosner, 2009. "Bayesian Nonparametric Nonproportional Hazards Survival Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 762-771, September.
- Papastamoulis, Panagiotis, 2016. "label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(c01).
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Fernando A. Quintana & Pilar L. Iglesias, 2003. "Bayesian clustering and product partition models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 557-574, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Xin & Zhu, Zhengyuan & Zhang, Hao Helen, 2023. "Spatial heterogeneity automatic detection and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.
- You, Na & Dai, Hongsheng & Wang, Xueqin & Yu, Qingyun, 2024. "Sequential estimation for mixture of regression models for heterogeneous population," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Li, Mingyang & Meng, Hongdao & Zhang, Qingpeng, 2017. "A nonparametric Bayesian modeling approach for heterogeneous lifetime data with covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 95-104.
- Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
- Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
- Yeonwoo Rho & Yun Liu & Hie Joo Ahn, 2020. "Revealing Cluster Structures Based on Mixed Sampling Frequencies," Papers 2004.09770, arXiv.org, revised Feb 2021.
- Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
- Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
- Shao, Lihui & Wu, Jiaqi & Zhang, Weiping & Chen, Yu, 2024. "Integrated subgroup identification from multi-source data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
- Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014.
"A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation,"
European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
- Galeano, Pedro & Ghosh, Pulak, 2010. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," DES - Working Papers. Statistics and Econometrics. WS ws103822, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Zaheer Ahmed & Alberto Cassese & Gerard Breukelen & Jan Schepers, 2023. "E-ReMI: Extended Maximal Interaction Two-mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 298-331, July.
- Creal, Drew & Kim, Jaeho, 2024. "Bayesian estimation of cluster covariance matrices of unknown form," Journal of Econometrics, Elsevier, vol. 241(1).
- Sun Jiehuan & Warren Joshua L. & Zhao Hongyu, 2017. "A Bayesian semiparametric factor analysis model for subtype identification," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(2), pages 145-158, April.
- Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
- Tonellato, Stefano F., 2020. "Bayesian nonparametric clustering as a community detection problem," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
- Ruth Fuentes–García & Ramsés Mena & Stephen Walker, 2010. "A Probability for Classification Based on the Dirichlet Process Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 389-403, November.
- Xiang Lu & Yaoxiang Li & Tanzy Love, 2021. "On Bayesian Analysis of Parsimonious Gaussian Mixture Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 576-593, October.
- Rodríguez, Carlos E. & Núñez-Antonio, Gabriel & Escarela, Gabriel, 2020. "A Bayesian mixture model for clustering circular data," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
More about this item
Keywords
Clustering; Conditional model; Dirichlet process mixture model; Finite mixtures; Gibbs sampler; Split-merge algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:162:y:2021:i:c:s0167947321000864. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.